SECTION 00-01-10
TABLE OF CONTENTS

VOLUME 1

PROCUREMENT AND CONTRACTING REQUIREMENTS
DIVISION 00 -- PROCUREMENT AND CONTRACTING REQUIREMENTS
 00-01-02 - Project Information
 00-01-07 - Seals Page
 00-01-10 - Table of Contents
 00-41-00 - Bid Form
 00-72-00 - General Conditions
 00-73-00 - Supplementary Conditions

SPECIFICATIONS
DIVISION 01 -- GENERAL REQUIREMENTS
 01-30-00 - Administrative Requirements
 01-40-00 - Quality Requirements
 01-60-00 - Product Requirements
 01-70-00 - Execution and Closeout Requirements
 01-78-00 - Closeout Submittals

DIVISION 03 -- CONCRETE
 03-30-00 - Cast-in-Place Concrete

DIVISION 04 -- MASONRY
 04-20-00 - Unit Masonry

DIVISION 05 -- METALS
 05-40-00 - Cold-Formed Metal Framing

DIVISION 06 -- WOOD, PLASTICS, AND COMPOSITES
 06-10-00 - Rough Carpentry
 06-17-53 - Shop-Fabricated Wood Trusses
 06-41-00 - Architectural Wood Casework

DIVISION 07 -- THERMAL AND MOISTURE PROTECTION
 07-13-00 - Sheet Waterproofing
 07-21-00 - Thermal Insulation
 07-21-19 - Foamed-In-Place Insulation
 07-25-00 - Weather Barriers
 07-3--00.10 - Self-Adhering Roofing Membrane
 07-41-13 - Metal Roof Panels
 07-42-13 - Metal Wall Panels
 07-62-00 - Sheet Metal Flashing and Trim
 07-72-00 - Roof Accessories
 07-84-00 - Firestopping
DIVISION 08 -- OPENINGS
- 08-11-13 - Hollow Metal Doors and Frames
- 08-43-13 - Aluminum-Framed Storefronts
- 08-71-00 - Door Hardware
- 08-71-10 – Hardware Schedule
- 08-80-00 - Glazing
- 08-91-00 - Louvers

DIVISION 09 -- FINISHES
- 09-21-16 - Gypsum Board Assemblies
- 09-51-00 - Acoustical Ceilings
- 09-65-00 - Resilient Flooring
- 09-68-13 - Tile Carpeting
- 09-77-33 - Glass Fiber Reinforced Plastic Panels
- 09-90-00 - Painting and Coating

DIVISION 10 -- SPECIALTIES
- 10-21-13.19 - Plastic Toilet Compartments
- 10-26-01 - Wall and Corner Guards
- 10-28-00 - Toilet, Bath, and Laundry Accessories
- 10-44-00 - Fire Protection Specialties
- 10-56-17 - Wall Mounted Standards and Shelving

DIVISION 31 -- EARTHWORK
- 31-11-00 - Clearing and Grubbing
- 31-20-00 - Unclassified Excavation and Grading
- 31-23-00 - Subgrade
- 31-25-00 - Erosion and Sediment Control
- 31-25-73 - Silt Fence
- 31-31-16 - Termite Control

DIVISION 33 – UTILITIES
- 32-58-00 - Pavement Marking
- 32-92-00 - Seeding and Mulching
- 33-30-00 - Gravity Sewers and Force Mains
- 33-11-13 - Water Distribution Piping
DIVISION 22 – PLUMBING
22-05-00 - Common Work Results for Plumbing
22-05-13 - Common Motor Requirements for Plumbing Equipment
22-05-17 - Sleeves and Sleeve Seals for Plumbing Piping
22-05-19 - Meters and Gages for Plumbing Piping
22-05-23 - General-Duty Valves for Plumbing Piping
22-05-29 - Hangers and Supports for Plumbing Piping and Equipment
22-05-53 - Identification for Plumbing Piping and Equipment
22-07-16 - Plumbing Equipment Insulation
22-07-19 - Plumbing Piping Insulation
22-11-16 - Domestic Water Piping
22-11-19 - Domestic Water Piping Specialties
22-13-16 - Sanitary Waste and Vent Piping
22-13-19 - Sanitary Waste Piping Specialties
22-34-00 - Fuel-Fired, Domestic-Water Heaters
22-40-00 - Plumbing Fixtures
22-47-13 - Drinking Fountains

DIVISION 23 -- HEATING, VENTILATING, AND AIR-CONDITIONING (HVAC)
23-05-00 - Common Work Results For HVAC
23-05-13 - Common Motor Requirements for HVAC Equipment
23-07-13 - Duct Insulation
23-31-13 - Metal Ducts
23-33-00 - Air Duct Accessories
23-34-23 - HVAC Power Ventilators
23-37-13 - Diffusers Registers and Grilles
23-81-23 - Computer-Room Air-Conditioners
23-81-26 - Split-System Air-Conditioners
23-81-29 - Variable Refrigerant Flow HVAC Systems
23-82-39.13 - Cabinet Unit Heaters

DIVISION 26 – ELECTRICAL
26-05-00 - Common Work Results for Electrical
26-05-19 - Low-Voltage Electrical Power Conductors and Cables
26-05-26 - Grounding and Bonding for Electrical Systems
26-05-29 - Hangers and Supports for Electrical Systems
26-05-33 - Raceway and Boxes for Electrical Systems
26-05-43 - Underground Ducts and Raceways for Electrical Systems
26-05-53 - Identification for Electrical Systems
26-24-16 - Panelboards
26-27-26 - Wiring Devices
26-28-13 - Fuses
26-28-16 - Enclosed Switches and Circuit Breakers
26-43-13 - Transient Voltage Suppression for Low Voltage Electrical Power Circuits
26-5-100 - Interior Lighting
26-56-00 - Exterior Lighting

DIVISION 28 -- ELECTRONIC SAFETY AND SECURITY
28-05-00 - Common Work Results for Electronic Safety and Security
28-05-13 - Conductors and Cables for Electronic Safety and Security
28-31-11 - Digital Addressable Fire Alarm System

END OF SECTION
SECTION 22 05 00
COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Transition fittings.
 3. Dielectric fittings.
 4. Mechanical sleeve seals.
 5. Sleeves.
 7. Grout.
 8. Equipment installation requirements common to equipment sections.
 10. Concrete bases.
 11. Supports and anchorages.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
F. The following are industry abbreviations for plastic materials:
 2. CPVC: Chlorinated polyvinyl chloride plastic.
 3. PE: Polyethylene plastic.
 4. PVC: Polyvinyl chloride plastic.
G. The following are industry abbreviations for rubber materials:
 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For the following:
 1. Transition fittings.
 2. Dielectric fittings.
 3. Mechanical sleeve seals.
 4. Escutcheons.

B. Welding certificates.
1.5 QUALITY ASSURANCE
A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION
A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.
B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

3.1 MANUFACTURERS
A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that are equal to the specified product, that may be incorporated into the Work include, but are not limited to, the manufacturers specified.

3.2 PIPE, TUBE, AND FITTINGS
A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.
B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

3.3 JOINING MATERIALS
A. Refer to individual Division 22 piping Sections for special joining materials not listed below.
B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 2. AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

G. Solvent Cements for Joining Plastic Piping:
 1. CPVC Piping: ASTM F 493.
 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

3.4 TRANSITION FITTINGS

A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
 1. Manufacturers:
 b. Dresser Industries, Inc.; DMD Div.
 c. Ford Meter Box Company, Incorporated (The); Pipe Products Div.
 d. JCM Industries.
 e. Smith-Blair, Inc.
 f. Viking Johnson.
 2. Underground Piping NPS 1-1/2 (DN 40) and Smaller: Manufactured fitting or coupling.
 3. Underground Piping NPS 2 (DN 50) and Larger: AWWA C219, metal sleeve-type coupling.
 4. Aboveground Pressure Piping: Pipe fitting.

B. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 1. Manufacturers:
 a. Eslon Thermoplastics.

C. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 1. Manufacturers:
 a. Thompson Plastics, Inc.

D. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC and PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.
 1. Manufacturers:
 a. NIBCO INC.
 b. NIBCO, Inc.; Chemtrol Div.

E. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.
 1. Manufacturers:
 b. Fernco, Inc.
 d. Plastic Oddities, Inc.

3.5 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C).
 1. Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Eclipse, Inc.
 d. Epco Sales, Inc.
 g. Zurn Industries, Inc.; Wilkins Div.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig (1035- or 2070-kPa) minimum working pressure as required to suit system pressures.
 1. Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Epco Sales, Inc.

E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig (1035- or 2070-kPa) minimum working pressure where required to suit system pressures.

F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
 1. Manufacturers:
 a. Calpico, Inc.
 b. Lochinvar Corp.

G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
 1. Manufacturers:
 a. Perfection Corp.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Co., Inc.
 d. Victaulic Co. of America.

3.6 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.
 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
3. Pressure Plates: Carbon steel or stainless steel. Include two for each sealing element.
4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

3.7 SLEEVES
 A. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

3.8 ESCUTCHEONS
 A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
 B. One-Piece, Deep-Profile Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
 C. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.
 D. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw or spring clips, and chrome-plated finish.
 E. One-Piece, Floor-Plate Type: Cast-iron floor plate.
 F. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

3.9 GROUT
 A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 4 - EXECUTION

4.1 PIPING SYSTEMS - COMMON REQUIREMENTS
 A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.
 B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
 C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
 D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
 E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
 F. Install piping to permit valve servicing.
 G. Install piping at indicated slopes.
 H. Install piping free of sags and bends.
 I. Install fittings for changes in direction and branch connections.
 J. Install piping to allow application of insulation.
K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install chrome plated escutcheons for penetrations of walls, ceilings, and floors.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 3. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6 (DN 150).
 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

P. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Install steel pipe for sleeves smaller than 6 inches (150 mm) in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches (150 mm) and larger in diameter.
 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

Q. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

S. Verify final equipment locations for roughing-in.

T. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

4.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
 3. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 4. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 5. PVC Nonpressure Piping: Join according to ASTM D 2855.
 6. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.

J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.

K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

4.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

4.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

4.5 PAINTING
A. Painting of plumbing systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

4.6 CONCRETE BASES
A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to codes at Project.
 1. Construct concrete bases of dimensions indicated, but not less than 6 inches (100 mm) larger in both directions than supported unit.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 12-inch (450-mm) centers around the full perimeter of the base.
 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 7. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete and reinforcement as specified in Division 03.

4.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES
A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.

C. Field Welding: Comply with AWS D1.1.

4.8 GROUTING
A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION
SECTION 22 05 13
COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
1. Motor controllers.
2. Torque, speed, and horsepower requirements of the load.
3. Ratings and characteristics of supply circuit and required control sequence.
4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with NEMA MG 1 unless otherwise indicated.
B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet (1000 m) above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS
A. Description: NEMA MG 1, Design B, medium induction motor.
B. Efficiency: Energy efficient, as defined in NEMA MG 1.
C. Service Factor: 1.15.
D. Multispeed Motors: Variable torque.
1. For motors with 2:1 speed ratio, consequent pole, single winding.
2. For motors with other than 2:1 speed ratio, separate winding for each speed.
E. Multispeed Motors: Separate winding for each speed.
F. Rotor: Random-wound, squirrel cage.
G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
H. Temperature Rise: Match insulation rating.
I. Insulation: Class F.
J. Code Letter Designation:
1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.

1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.

2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.

3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.

4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.

2. Split phase.

3. Capacitor start, inductor run.

4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

2.2 SLEEVE-SEAL SYSTEMS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. Metraflex Company (The).
 4. Pipeline Seal and Insulator, Inc.
 5. Proco Products, Inc.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Stainless steel.
 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Presealed Systems.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.
C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level.
 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."
E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
C. Secure nailing flanges to concrete forms.
D. Using grout, seal the space around outside of sleeve-seal fittings.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:
 1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6 (DN 150) Galvanized-steel-pipe sleeves.
 b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves.
 2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6 (DN 150) Galvanized-steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6 (DN 150) Galvanized-steel-pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6 (DN 150) Sleeve-seal fittings.
 b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves.

5. Interior Partitions:
 a. Piping Smaller Than NPS 6 (DN 150) Galvanized-steel-pipe sleeves.
 b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-sheet sleeves.

END OF SECTION
SECTION 22 05 19
METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
1. Bimetallic-actuated thermometers.
2. Thermowells.
3. Dial-type pressure gages.
4. Gage attachments.
5. Test plugs.
6. Test-plug kits.

B. Related Sections:
1. Section 22 11 13 "Facility Water Distribution Piping" for domestic water meters and combined domestic and fire-protection water-service meters outside the building.
2. Section 22 11 16 "Domestic Water Piping" for water meters inside the building.

1.03 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.04 INFORMATIONAL SUBMITTALS
A. Product Certificates: For each type of meter and gage, from manufacturer.

1.05 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.01 BIMETALLIC-ACTUATED THERMOMETERS
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include the following:
1. Ashcroft Inc.
4. Tel-Tru Manufacturing Company.
5. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
6. Weiss Instruments, Inc.

C. Case: Liquid-filled and sealed type(s); stainless steel with 3-inch (76-mm) nominal diameter.

D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F (deg C).

E. Connector Type(s): Union joint, adjustable angle, with unified-inch screw threads.

F. Connector Size: 1/2 inch (13 mm), with ASME B1.1 screw threads.

G. Stem: 0.25 or 0.375 inch (6.4 or 9.4 mm) in diameter; stainless steel.

H. Window: Plain glass.

I. Ring: Stainless steel.
J. Element: Bimetal coil.
K. Pointer: Dark-colored metal.
L. Accuracy: Plus or minus 1.5 percent of scale range.

2.02 THERMOWELLS

A. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Type: Stepped shank unless straight or tapered shank is indicated.
 4. External Threads: NPS 1/2, NPS 3/4, or NPS 1, (DN 15, DN 20, or NPS 25,) ASME B1.20.1 pipe threads.
 5. Internal Threads: 1/2, 3/4, and 1 inch (13, 19, and 25 mm), with ASME B1.1 screw threads.
 6. Bore: Diameter required to match thermometer bulb or stem.
 7. Insertion Length: Length required to match thermometer bulb or stem.
 8. Lagging Extension: Include on thermowells for insulated piping and tubing.
 9. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

2.03 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include the following:
 a. Ashcroft Inc.
 b. Flo Fab Inc.
 d. Tel-Tru Manufacturing Company.
 e. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 f. Weiss Instruments, Inc.
 3. Case: Liquid-filled, Sealed, Open-front, pressure relief type(s); cast aluminum; 4-1/2-inch (114-mm) nominal diameter.
 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 5. Movement: Mechanical, with link to pressure element and connection to pointer.
 6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi (kPa).
 8. Window: Glass.
 10. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.04 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.
B. Valves: Brass ball, with ASME B1.20.1 pipe threads.

2.05 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include the following:
 1. Flow Design, Inc.
 2. National Meter, Inc.
 3. Peterson Equipment Co., Inc.
 5. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 6. Weiss Instruments, Inc.

B. Description: Test-station fitting made for insertion into piping tee fitting.
C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

D. Thread Size: ASME B1.20.1 pipe thread.

E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F (3450 kPa at 93 deg C).

F. Core Inserts: EPDM self-sealing rubber.

2.06 TEST-PLUG KITS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include the following:
 1. Flow Design, Inc.
 2. National Meter, Inc.
 3. Peterson Equipment Co., Inc.
 5. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 6. Weiss Instruments, Inc.

B. Furnish one test-plug kit(s) containing one thermometer(s), one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.

C. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- (25- to 51-mm-) diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F (minus 4 to plus 52 deg C).

D. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- (25- to 51-mm-) diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F (minus 18 to plus 104 deg C).

E. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- (51- to 76-mm-) diameter dial and probe. Dial range shall be at least 0 to 200 psig (0 to 1380 kPa).

F. Carrying Case: Metal or plastic, with formed instrument padding.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install thermowells with socket extending a minimum of 2 inches (51 mm) into fluid and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.

G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

H. Install remote-mounted pressure gages on panel.

I. Install valve and snubber in piping for each pressure gage for fluids.

J. Install test plugs in piping tees.

K. Install thermometers in the following locations:
 1. Inlet and outlet of each water heater.
2. Inlets and outlets of each domestic water heat exchanger.
3. Inlet and outlet of each domestic hot-water storage tank.

L. Install pressure gages in the following locations:
1. Building water service entrance into building.
2. Suction and discharge of each domestic water pump.

3.02 CONNECTIONS
A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.03 ADJUSTING
A. Adjust faces of meters and gages to proper angle for best visibility.

3.04 THERMOMETER SCHEDULE
A. Thermometers at inlet and outlet of each domestic water heater shall be one of the following:
 1. Sealed, bimetallic-actuated type.
 5. Test plug with EPDM self-sealing rubber inserts.

B. Thermometers at inlets and outlets of each domestic water heat exchanger shall be one of the following:
 1. Sealed, bimetallic-actuated type.
 5. Test plug with EPDM self-sealing rubber inserts.

C. Thermometers at inlet and outlet of each domestic hot-water storage tank shall be one of the following:
 1. Sealed, bimetallic-actuated type.
 5. Test plug with EPDM self-sealing rubber inserts.

D. Thermometer stems shall be of length to match thermowell insertion length.

3.05 THERMOMETER SCALE-RANGE SCHEDULE
A. Scale Range for Domestic Cold-Water Piping: 0 to 100 deg F (Minus 20 to plus 50 deg C).
B. Scale Range for Domestic Hot-Water Piping: 0 to 250 deg F (0 to 150 deg C).

3.06 PRESSURE-GAGE SCHEDULE
A. Pressure gages at discharge of each water service into building shall be one of the following:
 2. Sealed, direct-mounted, plastic case.
 3. Test plug with EPDM self-sealing rubber inserts.

B. Pressure gages at suction and discharge of each domestic water pump shall be one of the following:
 2. Sealed, direct-mounted, plastic case.
 3. Test plug with EPDM self-sealing rubber inserts.

3.07 PRESSURE-GAGE SCALE-RANGE SCHEDULE
A. Scale Range for Water Service Piping: 0 to 100 psi (0 to 600 kPa)
B. Scale Range for Domestic Water Piping: 0 to 100 psi (0 to 600 kPa).
END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bronze angle valves.
 2. Brass ball valves.
 3. Bronze ball valves.
 5. Bronze swing check valves.
 7. Bronze gate valves.
 8. Iron gate valves.
 10. Iron globe valves.
 11. Lubricated plug valves.

B. Related Sections:
 1. Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
 2. Section 221116 "Domestic Water Piping" for valves applicable only to this piping.
 3. Section 221319 "Sanitary Waste Piping Specialties" for valves applicable only to this piping.

1.3 DEFINITIONS

A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene copolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. NRS: Nonrising stem.
E. SWP: Steam working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
B. ASME Compliance:
 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 2. ASME B31.1 for power piping valves.
 3. ASME B31.9 for building services piping valves.
C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set angle, gate, and globe valves closed to prevent rattling.
 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 5. Set butterfly valves closed or slightly open.
 6. Block check valves in either closed or open position.
B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor
 storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or
 stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures
 and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 8 (DN 200) and larger.
 2. Handwheel: For valves other than quarter-turn types.
 3. Handlever: For quarter-turn valves NPS 6 (DN 150) and smaller except plug valves.
 4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 5 plug valves,
 for each size square plug-valve head.

E. Valves in Insulated Piping: With 2-inch (50-mm) stem extensions and the following features:
 1. Gate Valves: With rising stem.
 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective
 sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 2. Grooved: With grooves according to AWWA C606.
 4. Threaded: With threads according to ASME B1.20.1.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE ANGLE VALVES

A. Class 125, Bronze Angle Valves with Nonmetallic Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. NIBCO INC.
 2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig (1380 kPa).
 d. Ends: Threaded.
 e. Stem: Bronze.
 f. Disc: PTFE or TFE.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron.

2.3 BRASS BALL VALVES

A. Two-Piece, Full-Port, Brass Ball Valves with Brass Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. DynaQuip Controls.
 d. Flow-Tek, Inc.; a subsidiary of Bray International, Inc.
 e. Hammond Valve.
2. Description:
 b. SWP Rating: 150 psig (1035 kPa).
 c. CWP Rating: 600 psig (4140 kPa).
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Brass.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

2.4 BRONZE BALL VALVES
A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. Crane Co.; Crane Valve Group; Crane Valves.
 d. Hammond Valve.
 e. Lance Valves; a division of Advanced Thermal Systems, Inc.
 f. Legend Valve.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Red-White Valve Corporation.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
2. Description:
 b. SWP Rating: 150 psig (1035 kPa).
 c. CWP Rating: 600 psig (4140 kPa).
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE or TFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

2.5 IRON, GROOVED-END BUTTERFLY VALVES
A. 175 CWP, Iron, Grooved-End Butterfly Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Kennedy Valve; a division of McWane, Inc.
 b. Shurjoint Piping Products.
 c. Tyco Fire Products LP; Grinnell Mechanical Products.
 d. Victaulic Company.
2. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 175 psig (1200 kPa).
 c. Body Material: Coated, ductile iron.
e. Disc: Coated, ductile iron.
f. Seal: EPDM.

2.6 **BRONZE SWING CHECK VALVES**

A. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Kitz Corporation.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Red-White Valve Corporation.
 i. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 4.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: PTFE or TFE.

B. Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Stockham Division.

2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Composition.
 g. Seat Ring: Bronze.
 h. Disc Holder: Bronze.
 i. Disc: PTFE or TFE.
 j. Gasket: Asbestos free.

2.7 **IRON, GROOVED-END SWING CHECK VALVES**

A. 300 CWP, Iron, Grooved-End Swing Check Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International, Inc.
 b. Shurjoint Piping Products.
 c. Tyco Fire Products LP; Grinnell Mechanical Products.
 d. Victaulic Company.

2. Description:
 a. CWP Rating: 300 psig (2070 kPa).
 c. Seal: EPDM.
 d. Disc: Spring-operated, ductile iron or stainless steel.
 e. Seat: Bronze.

2.8 **BRONZE GATE VALVES**

A. Class 125, NRS Bronze Gate Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane Co.; Crane Valve Group; Crane Valves.
2. Description:
 a. Standard: MSS SP-80, Type 1.
 b. CWP Rating: 200 psig (1380 kPa).
 d. Ends: Threaded or solder joint.
 e. Stem: Bronze.
 f. Disc: Solid wedge; bronze.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron or aluminum.

2.9 IRON GATE VALVES

A. Class 125, NRS, Iron Gate Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Flo Fab Inc.
 e. Hammond Valve.
 f. Kitz Corporation.
 g. Legend Valve.
 h. Milwaukee Valve Company.
 i. NIBCO INC.
 j. Powell Valves.
 k. Red-White Valve Corporation.
 l. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 m. Zy-Tech Global Industries, Inc.

 2. Description:
 a. Standard: MSS SP-70, Type 1.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Disc: Solid wedge.
 g. Packing and Gasket: Asbestos free.

2.10 BRONZE GLOBE VALVES

A. Class 125, Bronze Globe Valves with Nonmetallic Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. NIBCO INC.
 e. Red-White Valve Corporation.

 2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. CWP Rating: 200 psig (1380 kPa).
 d. Ends: Threaded or solder joint.
 e. Stem: Bronze.
f. Disc: PTFE or TFE.
g. Packing: Asbestos free.
h. Handwheel: Malleable iron or aluminum.

2.11 IRON GLOBE VALVES

A. Class 125, Iron Globe Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Co.; Crane Valve Group; Crane Valves.
 b. Crane Co.; Crane Valve Group; Jenkins Valves.
 c. Crane Co.; Crane Valve Group; Stockham Division.
 d. Hammond Valve.
 e. Kitz Corporation.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Powell Valves.
 i. Red-White Valve Corporation.
 j. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 k. Zy-Tech Global Industries, Inc.

 2. Description:
 a. Standard: MSS SP-85, Type I.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 d. Ends: Flanged.
 e. Trim: Bronze.
 f. Packing and Gasket: Asbestos free.

2.12 LUBRICATED PLUG VALVES

A. Class 125, Regular-Gland, Lubricated Plug Valves with Threaded Ends:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 2. Description:
 a. Standard: MSS SP-78, Type II.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
 d. Plug: Cast iron or bronze with sealant groove.

B. Class 125, Cylindrical, Lubricated Plug Valves with Threaded Ends:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Homestead Valve; a division of Olson Technologies, Inc.
 b. Milliken Valve Company.
 c. R & M Energy Systems; a unit of Robbins & Myers, Inc.

 2. Description:
 a. Standard: MSS SP-78, Type IV.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Material: ASTM A 48/A 48M or ASTM A 126, cast iron with lubrication-sealing system.
 d. Plug: Cast iron or bronze with sealant groove.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.
D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
 1. Shutoff Service: Ball, butterfly, gate, or plug valves.
 2. Throttling Service: Globe or angle valves.
 3. Pump-Discharge Check Valves:
 a. NPS 2 (DN 50) and Smaller: Bronze swing check valves with nonmetallic disc.
 b. NPS 2-1/2 (DN 65) and Larger for Domestic Water: Iron swing check valves with lever and weight or with spring or iron, center-guided, resilient-seat check valves.
 c. NPS 2-1/2 (DN 65) and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:
 1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Copper Tubing, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 3. For Steel Piping, NPS 2 (DN 50) and Smaller: Threaded ends.
 4. For Steel Piping, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 5. For Grooved-End Copper Tubing and Steel Piping: Valve ends may be grooved.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 (DN 50) and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. Bronze Angle Valves: Class 125, nonmetallic disc.
 3. Ball Valves: Two piece, full port, brass or bronze with brass or bronze trim.
 4. Bronze Swing Check Valves: Class 125, nonmetallic disc.
 5. Bronze Gate Valves: Class 125, NRS.

B. Pipe NPS 2-1/2 (DN 65) and Larger:
 1. Iron Valves, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): May be provided with threaded ends instead of flanged ends.
 2. Iron, Grooved-End Butterfly Valves: 175 CWP.
 3. Iron, Grooved-End Swing Check Valves: 300 CWP.
4. Iron Gate Valves: Class 125, NRS.

3.6 SANITARY-WASTE AND STORM-DRAINAGE VALVE SCHEDULE

A. Pipe NPS 2 (DN 50) and Smaller:
1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. Bronze Angle Valves: Class 125, nonmetallic disc.
3. Ball Valves: Two piece, full port, brass or bronze with brass or bronze trim.
4. Bronze Swing Check Valves: Class 125, nonmetallic disc.
5. Bronze Gate Valves: Class 125, NRS.

B. Pipe NPS 2-1/2 (DN 65) and Larger:
1. Iron Valves, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): May be provided with threaded ends instead of flanged ends.
2. Iron, Grooved-End Swing Check Valves: 300 CWP.
3. Iron Gate Valves: Class 125, NRS.
5. Lubricated Plug Valves: Class 125, regular gland, threaded.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Fiberglass pipe hangers.
 4. Metal framing systems.
 5. Fiberglass strut systems.
 6. Thermal-hanger shield inserts.
 7. Fastener systems.
 8. Pipe stands.
 9. Pipe positioning systems.
 10. Equipment supports.

1.02 DEFINITIONS
A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.03 PERFORMANCE REQUIREMENTS
A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 3. Design hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.04 SUBMITTALS
A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Pipe stands.
 4. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of trapeze hangers.
 2. Design Calculations: Calculate requirements for designing trapeze hangers.

D. Welding certificates.

1.05 QUALITY ASSURANCE
A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
PART 2 - PRODUCTS

2.01 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Stainless-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.02 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.03 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cooper B-Line, Inc.
 b. Flex-Strut Inc.
 c. Unistrut Corporation; Tyco International, Ltd.
 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 4. Channels: Continuous slotted steel channel with inturned lips.
 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.04 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers:
 1. ERICO International Corporation.
 3. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig (688-kPa) minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig (688-kPa) minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.05 FASTENER SYSTEMS
A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.06 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:
 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:
 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One or more; plastic.
 3. Vertical Members: Two or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.07 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.08 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.01 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported.
 Weld steel according to AWS D1.1/D1.1M.
C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer’s operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer’s written instructions.

F. Pipe Stand Installation:
1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Division 07 Section “Roof Accessories” for curbs.

G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

N. Insulated Piping:
1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.
d. NPS 8 to NPS 14 (DN 200 to DN 350): 24 inches (610 mm) long and 0.075 inch (1.91 mm) thick.
e. NPS 16 to NPS 24 (DN 400 to DN 600): 24 inches (610 mm) long and 0.105 inch (2.67 mm) thick.

5. Pipes NPS 8 (DN 200) and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.02 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.03 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.04 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).

3.05 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils (0.05 mm).
B. Retain first paragraph below if a Division 09 painting Section is in Project Manual. Revise reference if Division 09 Section "High-Performance Coatings" applies instead.
C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Valve tags.

1.02 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
C. Valve numbering scheme.
D. Valve Schedules: For each piping system to include in maintenance manuals.

1.03 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.01 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Material and Thickness: Stainless steel, 0.025-inch (0.64-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
 3. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.02 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, and having predrilled holes for attachment hardware.

D. Letter Color: Black.
E. Background Color: Yellow.
F. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
G. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
H. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
I. Fasteners: Stainless-steel rivets.
J. Label Content: Include caution and warning information, plus emergency notification instructions.

2.03 PIPE LABELS
A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: At least 1-1/2 inches (38 mm) high.

2.04 VALVE TAGS
A. Valve Tags: Stamped or engraved with 1/4-inch (6.4-mm) letters for piping system abbreviation and 1/2-inch (13-mm) numbers.
1. Tag Material: Stainless steel, 0.025-inch (0.64-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link chain S-hook.
B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
1. Valve-tag schedule shall be included in operation and maintenance data.

2.05 WARNING TAGS
A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
1. Size: Approximately 4 by 7 inches (100 by 178 mm)
2. Fasteners: Reinforced grommet and wire or string.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.01 PREPARATION
A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.02 EQUIPMENT LABEL INSTALLATION
A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.
3.03 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting."

B. Retain first paragraph below only if stenciled labels are permitted.

C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet (15 m) along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.

D. Pipe Label Color Schedule:
 1. Domestic Cold Water Piping:
 a. Background Color: Blue.
 c. Designation: DOM CW
 2. Domestic Hot Water Piping:
 b. Letter Color: Red.
 c. Designation: DOM HW
 3. Domestic Hot Water Recirculation Piping:
 a. Background Color: Orange.
 c. Designation: DOM HWR
 4. Sanitary Vent Piping:
 a. Background Color: Gray
 b. Letter Color: Black.
 c. Designation: SWV
 5. Sanitary Waste Piping:
 a. Background Color: Black.
 c. Designation: SS

3.04 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 1. Valve-Tag Size and Shape: 2” round for all systems
 2. Valve-Tag Color: Match pipe label colors
 3. Letter Color: Match pipe letter colors

C. Where valves are installed above ceiling use 3/4” metal tacks with color coded heads to identify the valve location and service. Coordinate the head color to match pipe labeling and lettering.

END OF SECTION
PART 2 - GENERAL

1.01 SUMMARY

A. Section includes insulating the following plumbing equipment:
 1. Domestic water heat exchangers.
 2. Domestic water, hot-water, and cold-water pumps.
 3. Domestic water storage tanks.

1.02 SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance, thickness, and jackets (both factory and field applied, if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail removable insulation at equipment connections and access panels.
 4. Detail application of field-applied jackets.
 5. Detail application at linkages of control devices.
 6. Detail field application for each equipment type.

C. Qualification Data: For qualified Installer.

D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

E. Field quality-control reports.

1.03 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship, and Training.

B. When fire-performance characteristics are important requirements, verify surface-burning characteristics of insulation materials by an independent testing agency and require test report submittals.

C. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.04 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.05 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with equipment Installer for equipment insulation application.

C. Coordinate installation and testing of heat tracing.
1.06 SCHEDULING
A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 3 - PRODUCTS
2.01 INSULATION MATERIALS
A. Products shall not contain asbestos, lead, mercury, or mercury compounds.
B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
E. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K- Flex USA; Insul-Sheet and K-FLEX LS.
F. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. (40 kg/cu. m) or more. Thermal conductivity (k-value) at 100 deg F (55 deg C) is 0.29 Btu x in./h x sq. ft x deg F (0.042 W/m x K) or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; MicroFlex.
 b. Knauf Insulation; Pipe and Tank Insulation.
 c. Manson Insulation Inc.; AK Flex.
 d. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.02 ADHESIVES
A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
B. Product attributes in first paragraph below are based on Foster Brand products; there are variations among manufacturers.
C. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armaflex 520 Adhesive.
 d. K-Flex USA; R-373 Contact Adhesive.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.
D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products: Subject to compliance with requirements, provide the following:
b. Eagle Bridges - Marathon Industries; 225.
d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

1. Products: Subject to compliance with requirements, provide the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

2.03 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. Although other thicknesses for PVC jackets are available, a flame-spread index of 25 and a smoke-developed index of 50 apply only to thicknesses of 30 mils (0.8 mm) and less.

C. Metal Jacket:
1. Products: Subject to compliance with requirements, provide one of the following:
 b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 c. RPR Products, Inc.; Insul-Mate.

 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier for Indoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
 d. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.

3. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.
 a. Sheet and roll stock ready for shop or field sizing.
 b. Material, finish, and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier for Indoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
 d. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
1. Verify that systems and equipment to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION
A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils (0.127 mm) thick and an epoxy finish 5 mils (0.127 mm) thick if operating in a temperature range between 140 and 300 deg F (60 and 149 deg C). Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F (0 and 149 deg C) with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.03 GENERAL INSTALLATION REQUIREMENTS
A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.

3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches (100 mm) o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

O. For above ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.04 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION

A. Mineral-Fiber, Pipe, and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
 1. In first subparagraph below, many manufacturers do not recommend 100 percent coverage of adhesive because of the effect on the overall insulation system's fire-performance characteristics. Verify application coverage recommendations with insulation manufacturer.
 2. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
 3. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 4. Protect exposed corners with secured corner angles.
 5. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 a. Do not weld anchor pins to ASME-labeled pressure vessels.
 b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 c. On tanks and vessels, maximum anchor-pin spacing is 3 inches (75 mm) from insulation end joints, and 16 inches (400 mm) o.c. in both directions.
 d. Do not overcompress insulation during installation.
 e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 f. Impale insulation over anchor pins and attach speed washers.
 g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 6. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
 7. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches (150 mm) from each end. Install wire or cable between two circumferential girdles 12 inches (300 mm) o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch...
prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches (1200 mm) o.c. Use this network for securing insulation with tie wire or bands.

8. Stagger joints between insulation layers at least 3 inches (75 mm).
9. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
10. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
11. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.

B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.
 1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
 2. Seal longitudinal seams and end joints.

C. Insulation Installation on Pumps:
 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch (150-mm) centers, starting at corners. Install 3/8-inch- (10-mm-) diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
 2. Fabricate boxes from stainless steel, at least 0.050 inch (1.3 mm) thick.
 3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.05 FINISHES
A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

3.06 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Retain first paragraph below to require Contractor to perform tests and inspections.
C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.07 EQUIPMENT INSULATION SCHEDULE
A. See the Insulation Evaluation tables in the Evaluations for rankings of different insulation types for different service ranges.
B. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
C. Insulate indoor and outdoor equipment that is not factory insulated.
D. Domestic hot-water storage tank insulation shall be the following thickness to provide an R-value of 12.5:
 1. Mineral-fiber pipe and tank.
E. Domestic water storage tank insulation shall be the following:
 1. Mineral-Fiber Pipe and Tank: 1 inch (25 mm) thick.
 2. END OF SECTION
SECTION 22 0719
PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.01 SUMMARY
A. Section includes insulating the following plumbing piping services:
 1. Domestic cold-water piping.
 2. Domestic hot-water piping.
 3. Domestic re-circulating hot-water piping.

1.02 SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail insulation application at pipe expansion joints for each type of insulation.
 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
 6. Detail application of field-applied jackets.
 7. Detail application at linkages of control devices.

C. Qualification Data: For qualified Installer.

D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

E. Field quality-control reports.

1.03 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. When fire-performance characteristics are important requirements, verify surface-burning characteristics of insulation materials by an independent testing agency and require test report submittals.

C. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

D. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.04 DELIVERY, STORAGE, AND HANDLING
A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.05 COORDINATION
Appalachian State University Field Hockey Fieldhouse
ASU Project # 20170120
SECTION 22 07 19 - PLUMBING PIPING INSULATION
A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.06 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.01 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.

G. Mineral-Fiber, Preformed Pipe Insulation:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Micro-Lok.
 b. Knauf Insulation; 1000-Degree Pipe Insulation.
 c. Owens Corning; Fiberglas Pipe Insulation.
 2. Type I, 850 Deg F (454 Deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.02 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armadex 520 Adhesive.
 d. K-Flex USA; R-373 Contact Adhesive.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

PART 3 - EXECUTION

3.01 EXAMINATION
 A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION
 A. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils (0.127 mm) thick and an epoxy finish 5 mils (0.127 mm) thick if operating in a temperature range between 140 and 300 deg F (60 and 149 deg C). Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F (0 and 149 deg C) with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
 C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.03 GENERAL INSTALLATION REQUIREMENTS
 A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
 B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
 C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
 D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
 E. Install multiple layers of insulation with longitudinal and end seams staggered.
 F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
 G. Keep insulation materials dry during application and finishing.
H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.04 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.05 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Where pipe expansion is anticipated, detail expansion compensation for insulation on Drawings and indicate intervals for its occurrence. See the Midwest Insulation Contractors Association's "National Commercial & Industrial Insulation Standards," Plate No. 41A.

C. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions.
Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

D. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

E. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.06 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.07 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 5. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
6. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

7. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches (150 mm) o.c.

8. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 4. Install insulation to flanges as specified for flange insulation application.

3.08 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint aluminum or stainless-steel jackets.

3.09 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Retain first paragraph below to require Contractor to perform tests and inspections.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.02 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.03 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:
 1. NPS 1 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
2. NPS 1-1/4 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch.

B. Domestic Hot and Recirculated Hot Water:
 1. NPS 1-1/4 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 2. NPS 1-1/2 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

C. Floor Drains, Traps, and Sanitary Drain Piping within Receiving Condensate and Equipment Drain Water below 60 Deg F (16 Deg C):
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch thick.

3.12 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Domestic Water Piping:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 2 inches thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

B. Domestic Hot and Recirculated Hot Water:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 2 inches thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

C. Sanitary Waste Piping Where Heat Tracing Is Installed:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric, Preformed Pipe Insulation, Type I: 2 inches thick.

END OF SECTION
SECTION 22 1116
DOMESTIC WATER PIPING

PART 1 - GENERAL

1.01 SUMMARY
A. Section includes:
 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
 2. Dielectric Fittings
 3. Water meters.

1.02 SUBMITTALS
A. Product Data: For the following products:
 1. Dielectric Fittings.
B. Field quality-control reports.

1.03 QUALITY ASSURANCE
A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
B. Retain first paragraph below if plastic piping materials are retained.
C. Comply with NSF 61 for potable domestic water piping and components.

1.04 COORDINATION
A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.01 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.02 COPPER TUBE AND FITTINGS
A. Hard Copper Tube: ASTM B 88, Type L (ASTM B 88M, Type B) water tube, drawn temper.
 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
B. Fittings in first subparagraph below are available in NPS 1/2 to NPS 4 (DN 15 to DN 100).
C. Soft Copper Tube: ASTM B 88, Type K (ASTM B 88M, Type A) water tube, annealed temper.

2.03 DIELECTRIC FITTINGS
A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.
B. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 c. Legend Valves and Fittings.
 2. Description:
 a. Pressure Rating: 200 psig (1725 kPa) at 200 deg F (82 deg C).
 b. End Connections: Solder-joint copper alloy and threaded ferrous.
C. Dielectric Flanges:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. EPCO Sales, Inc.
 c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 d. Legend Valves and Fittings.
 2. Description:
 a. Factory-fabricated, bolted, companion-flange assembly.
 b. Pressure Rating 175 psig (1200 kPa) minimum.
 c. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric Nipples:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Precision Plumbing Products, Inc.
 b. Victaulic Company.
 c. Legend Valves and Fittings.
 2. Description:
 a. Electroplated steel nipple complying with ASTM F 1545.
 b. Pressure Rating: 300 psig (2070 kPa) at 225 deg F (107 deg C).
 c. End Connections: Male threaded or grooved.
 d. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.01 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install underground copper tube in PE encasement according to ASTM A 674 or AWWA C105.

D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.

E. Install shutoff valve immediately upstream of each dielectric fitting.

F. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

G. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

H. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

I. Install piping adjacent to equipment and specialties to allow service and maintenance.

J. Install piping to permit valve servicing.

K. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.

L. Install piping free of sags and bends.

M. Install fittings for changes in direction and branch connections.

N. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
O. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.

P. Install thermostats in hot-water circulation piping.

Q. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.02 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

E. Pressure-Sealed Joints: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.

F. Copper-Tubing, Push-on Joints: Clean end of tube. Measure insertion depth with manufacturer's depth gage. Join copper tube and push-on-joint fittings by inserting tube to measured depth.

G. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

H. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

3.03 VALVE INSTALLATION

A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.

B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops.

C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.

D. Install balancing valve in each hot-water circulation return branch and discharge side of each pump and circulator. Set balancing valves partly open to restrict but not stop flow. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves.

3.04 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 (DN 50) and Smaller: Use dielectric couplings or nipples.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Use dielectric flanges.
3.06 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to equipment and machines to allow service and maintenance.
C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
 4. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection.

3.07 FIELD QUALITY CONTROL

A. Perform tests and inspections.
B. The contractor shall engage an independent laboratory to conduct bacteriological and post-chlorination test certifying that the water meets quality of the drinking water. The "Water Test Report for Use", after acceptance by the engineer of record is required to be submitted to the SCO project prior to occupancy.
C. Piping Inspections:
 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 2. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 3. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
D. Piping Tests:
 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 4. Cap and subject piping to static water pressure of 105 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
 6. Prepare reports for tests and for corrective action required.
E. Domestic water piping will be considered defective if it does not pass tests and inspections.
F. Prepare test and inspection reports.

3.08 ADJUSTING

A. Perform the following adjustments before operation:
1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide
 flow of hot water in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application
 where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.09 CLEANING
A. Clean and disinfect potable and non-potable domestic water piping as follows:
 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before
 using.
 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods
 are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow
 procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm (50 mg/L)
 of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm (200
 mg/L) of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after
 the standing time.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures
 if biological examination shows contamination.
 B. Retain first paragraph below if disinfection of non-potable domestic water piping is not required. If
 disinfection is required, delete first paragraph below and revise paragraph above.
 C. Clean non-potable domestic water piping as follows:
 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before
 using.
 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not
 prescribed, follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures
 if biological examination shows contamination.
 D. Prepare and submit reports of purging and disinfecting activities.
 E. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.10 PIPING SCHEDULE
A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in
 applications below unless otherwise indicated.
B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
D. Under-building-slab, domestic water, building service piping, NPS 3 (DN 80) and smaller shall be the
 following:
 1. Soft copper tube, ASTM B 88, Type K (ASTM B 88M, Type A); wrought-copper solder-joint fittings;
 and brazed joints.
E. Aboveground domestic water piping, NPS 2 and smaller shall be the following:
1. Hard copper tube, ASTM B 88, Type L (ASTM B 88M, Type B); wrought- copper solder-joint fittings; and soldered joints.

F. Aboveground domestic water piping, NPS 2-1/2 and larger, shall be the following:
1. Hard copper tube, ASTM B 88, Type L (ASTM B 88M, Type B); cast-or wrought- copper solder-joint fittings; and brazed joints.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Vacuum breakers.
2. Backflow preventers.
3. Strainers.
4. Outlet boxes.
5. Hose bibbs.
6. Wall hydrants.
7. Drain valves.
8. Water-hammer arresters.
9. Air vents.
10. Flexible connectors.
B. Related Requirements:
1. Section 220519 "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
2. Section 221116 "Domestic Water Piping" for water meters.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: For domestic water piping specialties.
1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES
A. Potable-water piping and components shall comply with NSF 6.

2.2 PERFORMANCE REQUIREMENTS
A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig (860 kPa) unless otherwise indicated.

2.3 VACUUM BREAKERS
A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.
 b. Cash Acme; a division of Reliance Worldwide Corporation.
 c. Conbraco Industries, Inc.
 d. FEBCO; a division of Watts Water Technologies, Inc.
 e. Rain Bird Corporation.
2. **Domestic Water Piping Specialties**

f. Toro Company (The); Irrigation Div.
g. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
h. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.

3. Size: NPS 1/4 to NPS 3 (DN 8 to DN 80), as required to match connected piping.
5. Inlet and Outlet Connections: Threaded.

B. Hose-Connection Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Arrowhead Brass Products.
 b. Cash Acme; a division of Reliance Worldwide Corporation.
 c. Conbraco Industries, Inc.
 d. Legend Valve.
 e. MIFAB, Inc.
 f. Prier Products, Inc.
 g. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 h. Woodford Manufacturing Company; a division of WCM Industries, Inc.
 i. Zurn Industries, LLC; Plumbing Products Group; Light Commercial Products.
 j. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.

5. Finish: Chrome or nickel plated.

2.4 Backflow Preventers

A. Intermediate Atmospheric-Vent Backflow Preventers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme; a division of Reliance Worldwide Corporation.
 b. Conbraco Industries, Inc.
 c. FEBCO; a division of Watts Water Technologies, Inc.
 d. Honeywell International Inc.
 e. Legend Valve.
 f. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 g. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.

2. Standard: ASSE 1012.
3. Operation: Continuous-pressure applications.
5. End Connections: Union, solder joint.
6. Finish: Chrome plated.

B. Reduced-Pressure-Principle Backflow Preventers:

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.
 b. Conbraco Industries, Inc.
 c. FEBCO; a division of Watts Water Technologies, Inc.
 d. Flomatic Corporation.
 e. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 f. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.

3. Operation: Continuous-pressure applications.
4. Accessories:
 a. Valves NPS 2 (DN 50) and Smaller: Ball type with threaded ends on inlet and outlet.
 b. Valves NPS 2-1/2 (DN 65) and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

C. Beverage-Dispensing-Equipment Backflow Preventers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 c. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
3. Operation: Continuous-pressure applications.
4. Size: NPS 1/4 or NPS 3/8 (DN 8 or DN 10).

2.5 STRAINERS FOR DOMESTIC WATER PIPING
A. Y-Pattern Strainers:
1. Pressure Rating: 125 psig (860 kPa) minimum unless otherwise indicated.
2. Body: Bronze for NPS 2 (DN 50) and smaller; cast iron.
3. End Connections: Threaded for NPS 2 (DN 50) and smaller; flanged for NPS 2-1/2 (DN 65) and larger.
4. Screen: Stainless steel with round perforations unless otherwise indicated.
5. Perforation Size:
 a. Strainers NPS 2 (DN 50) and Smaller: 0.020 inch (0.51 mm).

2.6 OUTLET BOXES
A. Clothes Washer Outlet Boxes:
1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 b. Guy Gray Manufacturing Co., Inc.
 c. IPS Corporation.
 d. LSP Products Group, Inc.
 e. Oatey.
 f. Plastic Oddities.
 g. Symmons Industries, Inc.
 h. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 i. Whitehall Manufacturing; a div. of Acorn Engineering Company.
 j. Zurn Industries, LLC; Plumbing Products Group; Light Commercial Products.
4. Faucet: Combination valved fitting or separate hot- and cold-water valved fittings complying with ASME A112.18.1. Include garden-hose thread complying with ASME B1.20.7 on outlets.
5. Supply Shutoff Fittings: NPS 1/2 (DN 15) gate, globe, or ball valves and NPS 1/2 (DN 15) copper, water tubing.
6. Drain: NPS 2 (DN 50) standpipe and P-trap for direct waste connection to drainage piping.
7. Inlet Hoses: Two 60-inch- (1500-mm-) long, rubber household clothes washer inlet hoses with female, garden-hose-thread couplings. Include rubber washers.
8. Drain Hose: One 48-inch- (1200-mm-) long, rubber household clothes washer drain hose with hooked end.

2.7 HOSE BIBBS
A. Hose Bibbs:
4. Supply Connections: NPS 1/2 or NPS 3/4 (DN 15 or DN 20) threaded or solder-joint inlet.
5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
10. Finish for Finished Rooms: Polished chrome plated.
11. Operation for Equipment Rooms: Wheel handle or operating key.
14. Include operating key with each operating-key hose bibb.
15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.8 WALL HYDRANTS

A. Nonfreeze Wall Hydrants:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. MIFAB, Inc.
 d. Watts Drainage Products.
 e. Woodford Manufacturing Company; a division of WCM Industries, Inc.
 f. Zurn Industries, LLC; Plumbing Products Group; Light Commercial Products.

4. Integral backflow preventer.
5. Operation: Loose key.
6. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
10. Nozzle and Wall-Plate Finish: Chrome plated.
11. Operating Keys(s): Two with each wall hydrant.

2.9 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: 400-psig (2760-kPa) minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

2.10 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:

Appalachian State University Field Hockey Fieldhouse ASU Project # 20170120
SECTION 22 1119
DOMESTIC WATER PIPING SPECIALTIES
1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. AMTROL, Inc.
 b. Josam Company.
 c. MIFAB, Inc.
 d. Precision Plumbing Products, Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 g. Tyler Pipe; Wade Div.
 h. Watts Drainage Products.
 i. Zurn Industries, LLC; Plumbing Products Group; Specification Drainage Products.

3. Type: Copper tube with piston.
4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.11 AIR VENTS
A. Bolted-Construction Automatic Air Vents:
 1. Body: Bronze.
 2. Pressure Rating and Temperature: 125-psig (860-kPa) minimum pressure rating at 140 deg F (60 deg C).
 3. Float: Replaceable, corrosion-resistant metal.
 5. Size: NPS 1/2 (DN 15) minimum inlet.

2.12 FLEXIBLE CONNECTORS
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Flex-Hose Co., Inc.
 3. Flexicraft Industries.
 4. Flex Pression, Ltd.
 5. Flex-Weld Incorporated.
 6. Hyspan Precision Products, Inc.
 7. Mercer Gasket & Shim, Inc.
 8. Metraflex, Inc.
 9. Proco Products, Inc.
 10. TOZEN Corporation.
 11. Unaflex.Universal Metal Hose; a Hyspan company.

B. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire- braid covering and ends welded to inner tubing.
 1. Working-Pressure Rating: Minimum 200 psig (1380 kPa).
 2. End Connections NPS 2 (DN 50) and Smaller: Threaded steel-pipe nipple.
 3. End Connections NPS 2-1/2 (DN 65) and Larger: Flanged steel nipple.

PART 3 - EXECUTION
3.1 INSTALLATION
A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
 3. Do not install bypass piping around backflow preventers.

B. Install Y-pattern strainers for water on supply side of each solenoid valve and pump as required.

Appalachian State University Field Hockey Fieldhouse
SECTION 22 1119
DOMESTIC WATER PIPING SPECIALTIES
C. Install outlet boxes recessed in wall or surface mounted on wall. Install 2-by-4-inch (38-by-89-mm) fire-retardant-treated-wood blocking, wall reinforcement between studs. Comply with requirements for fire-retardant-treated-wood blocking in Section 061000 "Rough Carpentry."

D. Install water-hammer arresters in water piping according to PDI-WH 201.

E. Install air vents at high points of water piping. Install drain piping and discharge onto floor drain.

3.2 CONNECTIONS

A. Comply with requirements for ground equipment in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Fire-retardant-treated-wood blocking is specified in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Intermediate atmospheric-vent backflow preventers.
 2. Reduced-pressure-principle backflow preventers.
 5. Primary, thermostatic, water mixing valves.
 6. Outlet boxes.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Test each reduced-pressure-principle backflow preventer according to authorities having jurisdiction and the device's reference standard.

B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated equipment.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY
A. Section Includes:
 1. Pipe, tube, and fittings.

1.02 PERFORMANCE REQUIREMENTS
A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

1.03 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: For sovent drainage system. Include plans, elevations, sections, and details.
C. Field quality-control reports.

1.04 QUALITY ASSURANCE
A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

1.05 PROJECT CONDITIONS
A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Notify Construction Manager no fewer than two days in advance of proposed interruption of sanitary waste service.

PART 2 - PRODUCTS

2.01 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.02 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS
A. Pipe and Fittings: ASTM A 74, Service class. Provide piping equal to Charlotte Pipe Foundy “Charlotte Service” Type and Gasket equal to Charlotte Seal or Quick-Tite.
B. Gaskets: ASTM C 564, rubber.

2.03 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS
A. Pipe and Fittings: CISPI 301.
B. Heavy-Duty, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Mission Rubber Company; a division of MCP Industries, Inc.
 b. Tyler Pipe.
 c. Charlotte Pipe Foundry Co.
 d. Anaco Huskey
 2. Standards: ASTM C 1540.
 3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

PART 3 - EXECUTION

3.01 PIPING INSTALLATION
A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

K. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

L. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

M. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

N. Install sleeves for piping penetrations of walls, ceilings, and floors.

O. Install sleeve seals for piping penetrations of concrete walls and slabs.

P. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Escutcheons for Plumbing Piping."

3.02 JOINT CONSTRUCTION

B. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

3.03 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
4. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 (DN 65) and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

3.04 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.05 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water (30 kPa). From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg (250 Pa). Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
6. Prepare reports for tests and required corrective action.

E. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
2. Cap and subject piping to static-water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
4. Prepare reports for tests and required corrective action.
3.06 CLEANING AND PROTECTION
A. Clean interior of piping. Remove dirt and debris as work progresses.
B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.07 PIPING SCHEDULE
A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
B. Aboveground, soil and waste piping shall be the following:
 1. Hubless, cast-iron soil pipe and fittings heavy-duty hubless-piping couplings; and coupled joints.
C. Aboveground, vent piping shall be the following:
 1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.
D. Underground or under building soil, waste, and vent piping shall be the following:
 1. Hub-and-spigot, cast-iron soil pipe and fittings; rubber gasket compression joints.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS
 a. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
 A. This Section includes the following sanitary drainage piping specialties:
 1. Cleanouts.
 2. Floor drains.
 3. Air-admittance valves.
 5. Flashing materials.
 b. Related Sections:
 1. 22 05 00 Common Work Results For Plumbing
 2. 22 05 17 Sleeves And Sleeve Seals For Plumbing Piping
 3. 22 05 23 General-Duty Valves For Plumbing Piping
 4. 22 05 29 Hangers And Supports For Plumbing Piping And Equipment
 5. 22 07 19 Plumbing Piping Insulation

1.03 DEFINITIONS
 B. FRP: Fiberglass-reinforced plastic.
 C. HDPE: High-density polyethylene plastic.
 D. PE: Polyethylene plastic.
 E. PP: Polypropylene plastic.
 F. PVC: Polyvinyl chloride plastic.

1.04 SUBMITTALS
 A. Field quality-control test reports.
 B. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.05 QUALITY ASSURANCE
 A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
 B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.06 COORDINATION
 A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
 B. Coordinate size and location of roof penetrations.
PART 2 - PRODUCTS

2.01 CLEANOUTS

A. Metal Floor Cleanouts:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Zurn
 c. Watts Drainage Products Inc.
 2. Standard: ASME A112.36.2M.
 3. Size: Same as connected branch.
 4. Type: Cast-iron soil pipe with cast-iron ferrule.
 5. Body or Ferrule: Cast iron.
 7. Frame and Cover Shape: Round.
 8. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.

B. Cast-Iron Wall Cleanouts:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Zurn
 c. Watts Drainage Products Inc.
 2. Standard: ASME A112.36.2M. Include wall access.
 3. Size: Same as connected drainage piping.
 4. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

2.02 FLOOR DRAINS

A. Cast-Iron Floor Drains:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Zurn
 c. Watts Drainage Products Inc.
 2. Standard: ASME A112.6.3.
 5. Outlet: Bottom.
 7. Top or Strainer Material: Nickel bronze.
 8. Top of Body and Strainer Finish: Nickel bronze.
 9. Top Shape: Square.
 10. Trap Material: Cast iron.
 12. Trap Features: Trap-seal primer valve drain connection.

2.04 AIR-ADMITTANCE VALVES

A. Fixture Air-Admittance Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Oatey.
2.05 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains:
1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
2. Size: Same as connected waste piping.

B. Deep-Seal Traps:
1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
2. Size: Same as connected waste piping.
 a. NPS 2 (DN 50): 4-inch- (100-mm-) minimum water seal.
 b. NPS 2-1/2 (DN 65) and Larger: 5-inch- (125-mm-) minimum water seal.

C. Air-Gap Fittings:
1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
2. Body: Bronze or cast iron.
3. Inlet: Opening in top of body.
4. Outlet: Larger than inlet.
5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4 (DN 100). Use NPS 4 (DN 100) for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet (15 m) for piping NPS 4 (DN 100) and smaller and 100 feet (30 m) for larger piping.
 4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches (750 mm) or Less: Equivalent to 1 percent slope, but not less than 1/4-inch (6.35-mm) total depression.
 b. Radius, 30 to 60 Inches (750 to 1500 mm): Equivalent to 1 percent slope.
 c. Radius, 60 Inches (1500 mm) or Larger: Equivalent to 1 percent slope, but not greater than 1-inch (25-mm) total depression.

3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.

4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

5. Provide and install ‘Trap Guard’ device or equal for each drain location.

F. Install fixture air-admittance valves on fixture drain piping.

G. Assemble open drain fittings and install with top of hub 2 inches (51 mm) above floor.

H. Install deep-seal traps on floor drains and other waste outlets, if indicated.

I. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.

J. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.

K. Install solids interceptors with cleanout immediately downstream from interceptors that do not have integral cleanout on outlet. Install trap on interceptors that do not have integral trap and are connected to sanitary drainage and vent systems.

3.02 PROTECTION
A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

3.03 IDENTIFICATION
A. Identification materials and installation are specified in Section 312000 “Earth Moving.” Arrange for installation of green warning tapes directly over piping and at outside edges of underground interceptors.

1. Use detectable warning tape over ferrous and nonferrous piping and over edges of underground structures.

END OF SECTION
SECTION 22 34 00
FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, 220500-Common Work Results For Plumbing and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 2. Domestic-water heater accessories.

1.3 ACTION SUBMITTALS
A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings:
 1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Seismic Qualification Certificates: For fuel-fired, domestic-water heaters, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
B. Product Certificates: For each type of gas-fired, tankless, domestic-water heater, from manufacturer.
C. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.
D. Source quality-control reports.
E. Field quality-control reports.
F. Warranty: Sample of special warranty.
1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuel-fired, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE/IESNA Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.

C. ASME Compliance:
 1. Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code.

D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61, "Drinking Water System Components - Health Effects."

1.7 COORDINATION

A. Coordinate sizes and locations with actual equipment provided.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.

 1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

 2. Warranty Periods: From date of Substantial Completion.
 a. Gas-Fired, Tankless, Domestic-Water Heaters:
 1) Heat Exchanger: Five years.
 2) Controls and Other Components: Three years.
 b. Compression Tanks: Five years.

PART 2 - PRODUCTS

2.1 GAS-FIRED, TANKLESS, domestic-WATER HEATERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. NORITZ America Corp.
2. Rheem Manufacturing Company; Rheem Water Heating.
3. Rinnai Corporation.

C. Construction: Copper piping or tubing complying with NSF 61 barrier materials for potable water, without storage capacity.
 3. Heat Exchanger: Copper tubing.
 4. Insulation: Comply with ASHRAE/IESNA 90.1.
 5. Jacket: Metal, with enameled finish, or plastic.
 7. Automatic Ignition: Manufacturer's proprietary system for automatic, gas ignition.
 8. Temperature Control: Adjustable thermostat.

D. Support: Bracket for wall mounting.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Compression Tanks:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL Inc.
 b. Smith, A. O. Water Products Co.; a division of A. O. Smith Corporation.
 c. State Industries.
 d. Taco, Inc.
 2. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
 3. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

B. Manifold Kits: Domestic-water heater manufacturer's factory-fabricated inlet and outlet piping for field installation, for multiple domestic-water heater installation. Include ball-, butterfly-, or gate-type shutoff valves to isolate each domestic-water heater and balancing valves to provide balanced flow through each domestic-water heater.
 1. Comply with requirements for ball-, butterfly-, or gate-type shutoff valves specified in Section 220523 "General-Duty Valves for Plumbing Piping."
 2. Comply with requirements for balancing valves specified in Section 221119 "Domestic Water Piping Specialties."

D. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include pressure rating as required to match gas supply.
E. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.

F. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.3 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect assembled domestic-water heaters[specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half times pressure rating before shipment.

C. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

A. Tankless, Domestic-Water Heater Mounting: Install tankless, domestic-water heaters at least 18 inches above floor on wall bracket.

1. Maintain manufacturer's recommended clearances.
2. Arrange units so controls and devices that require servicing are accessible.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.
5. Anchor domestic-water heaters to substrate.

B. Install domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523 'General-Duty Valves for Plumbing Piping.'

C. Install gas-fired, domestic-water heaters according to NFPA 54.

1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.
4. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves.
D. Install combination temperature-and-pressure relief valves in water piping for domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

E. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."

F. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

G. Assemble and install inlet and outlet piping manifold kits for multiple domestic-water heaters. Fabricate, modify, or arrange manifolds for balanced water flow through each domestic-water heater. Include shutoff valve and thermometer in each domestic-water heater inlet and outlet, and throttling valve in each domestic-water heater outlet. Comply with requirements for valves specified in Section 220523 "General-Duty Valves for Plumbing Piping," and comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

H. Fill domestic-water heaters with water.

I. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

A. Comply with requirements for domestic-water piping specified in Section 221116 "Domestic Water Piping."

B. Drawings indicate general arrangement of piping, fittings, and specialties.

C. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting requirements and Section 017300 "Execution" for requirements for correcting the Work.
C. Prepare test and inspection reports.

3.5 **DEMONSTRATION**

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain gas-fired, tankless domestic-water heaters.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. This Section includes the following conventional plumbing fixtures and related components:

1. Faucets for lavatories, and sinks.
2. Flushometers.
3. Toilet seats.
4. Fixture supports.
5. Water closets.
6. Urinals.
7. Lavatories.

1.02 DEFINITIONS

B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.
C. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.
D. Cultured Marble: Cast-filled-polymer-plastic material with surface coating.
E. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.
F. FRP: Fiberglass-reinforced plastic.
G. PMMA: Polymethyl methacrylate (acrylic) plastic.
H. PVC: Polyvinyl chloride plastic.

1.03 SUBMITTALS

A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.
B. Shop Drawings: Diagram power, signal, and control wiring.
C. Operation and Maintenance Data: For plumbing fixtures to include in emergency, operation, and maintenance manuals.
D. Warranty: Special warranty specified in this Section.

1.04 QUALITY ASSURANCE

A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.
1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.
F. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

I. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.

J. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.

K. Comply with the following applicable standards and other requirements specified for plumbing fixtures:
 2. Vitreous-China Fixtures: ASME A112.19.2M.

L. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:
 1. Backflow Protection Devices for Faucets with Side Spray: ASME A112.18.3M.
 2. Backflow Protection Devices for Faucets with Hose-Thread Outlet: ASME A112.18.3M.
 5. Hose-Connection Vacuum Breakers: ASSE 1011.

M. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:
 2. Brass and Copper Supplies: ASME A112.18.1.

N. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 1. Disposers: ASSE 1008 and UL 430.
 4. Floor Drains: ASME A112.6.3.
 5. Grab Bars: ASTM F 446.
 8. Off-Floor Fixture Supports: ASME A112.6.1M.

1.05 WARRANTY

A. Special Warranties: Manufacturer’s standard form in which manufacturer agrees to repair or replace components of whirlpools that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Structural failures of unit shell.
 b. Faulty operation of controls, blowers, pumps, heaters, and timers.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Period for Commercial Applications: Three year(s) from date of Final Acceptance or Beneficial Occupancy.

PART 2 - PRODUCTS

2.01 LAVATORY FAUCETS

A. Lavatory Faucets:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Delta Faucet Company.
 b. Sloan Valve Company
 c. Zurn Industries
 d. Chicago Faucets.
 2. Description: Single-control mixing valve. Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture holes; coordinate outlet with spout and fixture receptor.
 b. Finish: Polished chrome plate.
 c. Maximum Flow Rate: 0.5 gpm (1.5 L/min.).
 d. Centers: Single hole.
 e. Mounting: Deck, exposed.
 f. Spout Outlet: Spray, 0.5 gpm (1.5 L/min.).
 g. Operation: Sensor.
 h. Tempering Device: Thermostatic.

2.02 SINK FAUCETS

A. Sink Faucets:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Delta Faucet Company.
 b. Sloan Valve Company
 c. Zurn Industries
 d. Chicago Faucets.
 2. Description: Kitchen faucet with spray, three-hole fixture. Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture holes; coordinate outlet with spout and fixture receptor.
 b. Finish: Polished chrome plate.
 c. Maximum Flow Rate: 1.5 gpm, unless otherwise indicated.
 d. Mixing Valve: Single control.
 e. Backflow Protection Device for Hose Outlet: Required.
 f. Centers: 4 inches (102 mm).
 g. Mounting: Deck.

2.03 FLUSHOMETERS

A. Flushometers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 a. Sloan Valve Company.
 b. Zurn Industries
 c. TOTO USA, Inc.
 2. Description: Flushometer for urinal and water-closet-type fixture. Include brass body with corrosion-resistant internal components, control stop with check valve, vacuum breaker, copper or brass tubing, and polished chrome-plated finish on exposed parts.
 a. Internal Design: Diaphragm operation.
 b. Style: Exposed.
 d. Consumption:
1. Urinals; 0.5 gpm
2. Water Closets; 1.28 gpm

2.04 TOILET SEATS

A. Toilet Seats:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Church Seats.
 c. Zurn Industries.
 2. Description: Toilet seat for water-closet-type fixture.
 a. Material: Molded, solid plastic with antimicrobial agent.
 b. Configuration: Open front without cover.
 c. Size: Elongated.
 d. Class: Standard commercial.
 e. Color: White.

2.05 FIXTURE SUPPORTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Zurn Industries.
 2. Josam Company.

B. Water-Closet Supports:
 1. Description: Combination carrier designed for accessible and standard mounting height of wall-mounting, water-closet-type fixture. Include single or double, vertical or horizontal, hub-and-spigot or hubless waste fitting as required for piping arrangement; faceplates; couplings with gaskets; feet; and fixture bolts and hardware matching fixture. Include additional extension coupling, faceplate, and feet for installation in wide pipe space.

C. Urinal Supports:
 1. Description: Type I, urinal carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture for wall-mounting, urinal-type fixture. Include steel uprights with feet.

D. Lavatory Supports:
 1. Description: Type II, lavatory carrier with concealed arms and tie rod for wall-mounting, lavatory-type fixture. Include steel uprights with feet.

2.06 WATER CLOSETS

A. Water Closets: Wall mounted, top spud, flush valve

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Sloan Valve Company.
 b. American Standard Companies, Inc.
 c. Zurn Industries.
 d. Eljer.
 2. Description: Wall-mounting, back-outlet, vitreous-china fixture designed for flushometer valve operation.
 a. Style: One piece.
 1) Bowl Type: Elongated with siphon-jet design.
 2) Design Consumption: 1.28 gal./flush.

2.07 URINALS

A. Urinals:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2.08 LAVATORIES
A. Lavatories:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Sloan Valve Company
 b. American Standard Companies, Inc.
 c. Eljer.
 d. Zurn Industries
2. Description: Wall-mounting, fixture.
 a. Lavatory Size: 18 by 20 inches.

2.11 SERVICE BASINS
A. Service Basins:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fiat
 b. Acorn Engineering Company.
 c. Stern-Williams Co., Inc.
2. Description: Flush-to-wall, floor-mounting, fixture with rim guard.
 a. Shape: Square.
 b. Size: See Plans.
 c. Height: 12 inches (305 mm).
 d. Rim Guard: On all top surfaces.
 e. 24” tall stainless steel wall guards on all walls.
 f. Mop hanger.
 g. Hose.

PART 3 - EXECUTION
3.01 EXAMINATION
A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.
B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION
A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers’ written instructions.
B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
 1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
 2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
 3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.
C. Install back-outlet, wall-mounting fixtures onto waste fitting seals and attach to supports.
D. Install wall-mounting fixtures with tubular waste piping attached to supports.
E. Install counter-mounting fixtures in and attached to casework.
F. Install fixtures level and plumb according to roughing-in drawings.
G. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
1. Exception: Use ball, gate, or globe valves if supply stops are not specified with fixture. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
H. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.
I. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.
J. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.
K. Install toilet seats on water closets.
L. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
M. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.
N. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
O. Install traps on fixture outlets.
1. Exception: Omit trap on fixtures with integral traps.
2. Exception: Omit trap on indirect wastes, unless otherwise indicated.
P. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Escutcheons for Plumbing Piping."
Q. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

3.03 CONNECTIONS
A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.04 FIELD QUALITY CONTROL
A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.
B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.
C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.
D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.
E. Install fresh batteries in sensor-operated mechanisms.

3.05 CLEANING
A. Clean fixtures, faucets, and other fittings with manufacturers’ recommended cleaning methods and materials. Do the following:
 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 2. Remove sediment and debris from drains.

B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.06 PROTECTION

A. Provide protective covering for installed fixtures and fittings.

B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes drinking fountains and related components.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of drinking fountain.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Include operating characteristics, and furnished specialties and accessories.
B. LEED Submittals:
 1. Product Data Documentation indicating flow and water consumption requirements.

1.4 CLOSEOUT SUBMITTALS
A. Maintenance Data: For drinking fountains to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 DRINKING FOUNTAINS
A. Drinking Fountains: Stainless steel, wall mounted. (Single bowl similar)
 1. Stainless-Steel Drinking Fountains:
 a. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1) Oasis
 2) Elkay Manufacturing Co.
 3) Halsey Taylor.
 4) Haws Corporation.
 5) Stern-Williams Co., Inc.
 b. Standards:
 a. Comply with NSF 61.
 c. Type Receptor: With back.
 d. Receptor Shape: Rectangular.
 e. Back Panel: Stainless-steel wall plate behind drinking fountain.
 f. Bubblers: Two, with adjustable stream regulator, vandal resistant located on deck.
 g. Control: Push button.
 h. Drain: Grid type with NPS 1-1/4 (DN 32) tailpiece.
 i. Supply: NPS 3/8 with shutoff valve.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in for water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.
B. Examine walls and floors for suitable conditions where fixtures will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION
A. Install fixtures level and plumb according to roughing-in drawings. For fixtures indicated for children, install at height required by authorities having jurisdiction.
B. Install off-the-floor carrier supports, affixed to building substrate, for wall-mounted fixtures.
C. Install water-supply piping with shutoff valve on supply to each fixture to be connected to domestic-water distribution piping. Use ball, gate, or globe valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Section 220523 “General-Duty Valves for Plumbing Piping.”
D. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.
E. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding fittings.
F. Seal joints between fixtures and walls using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 “Joint Sealants.”

3.3 CONNECTIONS
A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
B. Comply with water piping requirements specified in Section 221116 “Domestic Water Piping.”
C. Install ball, gate, or globe shutoff valve on water supply to each fixture. Comply with valve requirements specified in Section 220523 “General-Duty Valves for Plumbing Piping.”
D. Comply with soil and waste piping requirements specified in Section 221316 “Sanitary Waste and Vent Piping.”

3.4 ADJUSTING
A. Adjust fixture flow regulators for proper flow and stream height.

3.5 CLEANING
A. After installing fixtures, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.
B. Clean fixtures, on completion of installation, according to manufacturer’s written instructions.
C. Provide protective covering for installed fixtures.
D. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section is not meant to supersede or otherwise override any other specific HVAC section that may include similar information. Whenever conflicting information, requirements and or results are encountered, the specific specification, NOT this common work results section, should be adhered to. If any confusion still remains, consult the engineer.
B. This Section includes the following: (All may not apply. Refer to drawings)
 1. Piping materials and installation instructions common to most piping systems.
 2. Transition fittings.
 3. Dielectric fittings.
 4. Mechanical sleeve seals.
 5. Sleeves.
 7. Grout.
 8. HVAC demolition.
 9. Equipment installation requirements common to equipment sections.
 10. Painting and finishing.
 11. Concrete bases.
 12. Supports and anchorages.

1.3 DEFINITIONS
A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
F. The following are industry abbreviations for plastic materials:
 1. CPVC: Chlorinated polyvinyl chloride plastic.
 2. PE: Polyethylene plastic.
 3. PVC: Polyvinyl chloride plastic.
G. The following are industry abbreviations for rubber materials:
 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS
A. Product Data: For the following:
 1. Transition fittings.
 2. Dielectric fittings.
 3. Mechanical sleeve seals.
 4. Escutcheons.
B. Welding certificates.
1.5 QUALITY ASSURANCE
A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION
A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.
B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS
2.1 MANUFACTURERS
A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS
A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS
A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 2. AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BA81, silver alloy for refrigerant piping, unless otherwise indicated.
G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
H. Solvent Cements for Joining Plastic Piping:
1. CPVC Piping: ASTM F 493.
 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 I. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

2.4 TRANSITION FITTINGS
A. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 1. Manufacturers:
 a. Eslon Thermoplastics.
B. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 1. Manufacturers:
 a. Thompson Plastics, Inc.
C. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC and PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.
 1. Manufacturers:
 a. NIBCO INC.
 b. NIBCO, Inc.; Chemtrol Div.

2.5 DIELECTRIC FITTINGS
A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
B. Insulating Material: Suitable for system fluid, pressure, and temperature.
C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C).
 1. Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Eclipse, Inc.
 d. Epco Sales, Inc.
 g. Zurn Industries, Inc.; Wilkins Div.
D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig (1035- or 2070-kPa) minimum working pressure as required to suit system pressures.
 1. Manufacturers:
 a. Capitol Manufacturing Co.
 b. Central Plastics Company.
 c. Epco Sales, Inc.
E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig (1035- or 2070-kPa) minimum working pressure where required to suit system pressures.
F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
 1. Manufacturers:
 a. Calpico, Inc.
 b. Lochinvar Corp.
G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
1. Manufacturers:
 a. Perfection Corp.
 b. Precision Plumbing Products, Inc.
 c. Sioux Chief Manufacturing Co., Inc.
 d. Victaulic Co. of America.

2.6 MECHANICAL SLEEVE SEALS
 A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 1. Manufacturers:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.
 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 3. Pressure Plates: Carbon steel or Stainless steel. Include two for each sealing element.
 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating or Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES
 A. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
 B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
 C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
 D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.
 E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.
 G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.8 ESCUTCHEONS
 A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
 B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
 C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated.
 D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.
 E. One-Piece, Stamped-Steel Type: With set screw and chrome-plated finish.
 F. Split-Plate, Stamped-Steel Type: With concealed hinge, set screw, and chrome-plated finish.
 G. One-Piece, Floor-Plate Type: Cast-iron floor plate.
 H. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

2.9 GROUT (MECHANICAL EQUIPMENT BASES)
 A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping free of sags and bends.

G. Install fittings for changes in direction and branch connections.

H. Install piping to allow application of insulation.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 g. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 h. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 i. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

M. Sleeves are not required for core-drilled holes.

N. Permanent sleeves are not required for holes formed by removable PE sleeves.

O. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

P. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

2. Install sleeves in new walls and slabs as new walls and slabs are constructed.

3. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 a. Steel Pipe Sleeves: For pipes smaller than NPS 6 (DN 150).
 b. Steel Sheet Sleeves: For pipes NPS 6 (DN 150) and larger, penetrating gypsum-board partitions.
 c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level. Refer to Division 07 Section "Sheet Metal Flashing and Trim" for flashing.

 1) Seal space outside of sleeve fittings with grout.

4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
Q. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Install steel pipe for sleeves smaller than 6 inches (150 mm) in diameter.
 2. Install cast-iron "wall pipes" for sleeves 6 inches (150 mm) and larger in diameter.
 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

R. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

S. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

T. Verify final equipment locations for roughing-in.

U. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 3. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 4. PVC Nonpressure Piping: Join according to ASTM D 2855.

J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.

K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

L. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.
M. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.3 PIPING CONNECTIONS
A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS
A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING
A. Painting of HVAC systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.6 CONCRETE BASES
A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 1. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of the base.
 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use supported equipment manufacturer’s setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 6. Install anchor bolts according to anchor-bolt manufacturer’s written instructions.
 7. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete."

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES
A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
C. Field Welding: Comply with AWS D1.1.

3.8 GROUTING
A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
B. Clean surfaces that will come into contact with grout.
C. Provide forms as required for placement of grout.
D. Avoid air entrapment during placement of grout.
E. Place grout, completely filling equipment bases.
F. Place grout on concrete bases and provide smooth bearing surface for equipment.
G. Place grout around anchors.
H. Cure placed grout.

END OF SECTION
SECTION 23-05-13
COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL
1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on AC power systems up to 600 V and installed at equipment manufacturer’s factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS
2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.
B. Comply with NEMA MG 1 unless otherwise indicated.
C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet (1000 m) or less, above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS
A. Description: NEMA MG 1, Design B, medium induction motor.
B. Efficiency: Motors shall be premium efficiency.
C. Service Factor: 1.15.
D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
E. Multispeed Motors: Separate winding for each speed.
F. Rotor: Random-wound, squirrel cage.
G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
H. Temperature Rise: Match insulation rating.
I. Insulation: Class F.
J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes insulating the following duct services:
 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed supply and outdoor air.
 3. Indoor, concealed return located in unconditioned space.
 4. Indoor, exposed return located in unconditioned space.
 5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
B. Field quality-control reports.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION
A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING
A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS
B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type II for sheet materials.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Sheet, K-Flex Gray Duct Liner, and K-FLEX LS.

G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Friendly Feel Duct Wrap.
 d. Manson Insulation Inc.; Alley Wrap.
 e. Owens Corning; SOFTR All-Service Duct Wrap.

H. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials and Type II, Grade 1 for sheet materials.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Armacell LLC; Tubolit.
 b. Nomaco Insulation; IMCOLOCK, IMCOSHEET, NOMALOCK, and NOMAPLY.

2.2 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Board: Structural-grade, press-molded, xonolite calcium silicate, fireproofing board suitable for operating temperatures up to 1700 deg F (927 deg C). Comply with ASTM C 656, Type II, Grade 6. Tested and certified to provide a 1 or 2-hour fire rating, as specified on drawings, by an NRTL acceptable to authorities having jurisdiction.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Super Firetemp M.

B. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 1 or 2-hour fire rating, as specified on drawings, by an NRTL acceptable to authorities having jurisdiction.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; FlameChek.
 b. Johns Manville; Firetemp Wrap.
 c. Nelson Fire Stop Products; Nelson FSB Flameshield Blanket.
 d. Thermal Ceramics; FireMaster Duct Wrap.
 e. 3M; Fire Barrier Wrap Products.
 f. Unifrax Corporation; FyreWrap.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armaflex 520 Adhesive.
 d. K-Flex USA; R-373 Contact Adhesive.
 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
d. Mon-Eco Industries, Inc.; 22-25.
2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.
2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Use adhesive that complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers," including 2004 Addenda.

2.4 MASTICS
A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
1. Products: Subject to compliance with requirements, provide one of the following:
 b. Vimasco Corporation; 749.
2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.
1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 501.
 d. Mon-Eco Industries, Inc.; 55-10.
2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.03 metric perm) at 35-mil (0.9-mm) dry film thickness.
3. Service Temperature Range: 0 to 180 deg F (Minus 18 to plus 82 deg C).

D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 570.
2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.033 metric perm) at 30-mil (0.8-mm) dry film thickness.
3. Service Temperature Range: Minus 50 to plus 220 deg F (Minus 46 to plus 104 deg C).
4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

E. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 550.
 e. Vimasco Corporation; WC-1/WC-5.
2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 LAGGING ADHESIVES
A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Products: Subject to compliance with requirements, provide one of the following:
 c. Vimasco Corporation; 713 and 714.
3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
4. Service Temperature Range: 0 to plus 180 deg F (Minus 18 to plus 82 deg C).

2.6 SEALANTS
A. FSK and Metal Jacket Flashing Sealants:
1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 405.
 c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 d. Mon-Eco Industries, Inc.; 44-05.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
5. Color: Aluminum.
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Use sealants that comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers,” including 2004 Addenda.

B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
1. Products: Subject to compliance with requirements, provide one of the following:
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Use sealants that comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers,” including 2004 Addenda.
2.7 FACTORY-APPLIED JACKETS
A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
 5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms (0.86 metric perm) when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH
A. Woven Glass-Fiber Fabric: Approximately 6 oz./sq. yd. (203 g/sq. m) with a thread count of 5 strands by 5 strands/sq. in. (2 strands by 2 strands/sq. mm) for covering ducts.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Chil-Glas No. 5.
 B. Woven Polyester Fabric: Approximately 1 oz./sq. yd. (34 g/sq. m) with a thread count of 10 strands by 10 strands/sq. in. (4 strands by 4 strands/sq. mm), in a Leno weave, for ducts.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Vimasco Corporation; Elastafab 984.

2.9 FIELD-APPLIED CLOTHS
A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd. (271 g/sq. m).
 1. Products: Subject to compliance with requirements, provide one of the following:

2.10 FIELD-APPLIED JACKETS
A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.
 2. Adhesive: As recommended by jacket material manufacturer.
D. Metal Jacket:
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 c. RPR Products, Inc.; Insul-Mate.
 a. Finish and thickness are indicated in field-applied jacket schedules.
 b. Moisture Barrier for Indoor Applications: 1-mil- (0.025-mm-) thick, heat-bonded polyethylene and kraft paper.
 c. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper of 2.5-mil- (0.063-mm-) thick polysurlyn.
E. Self-Adhesive Outdoor Jacket: 60-mil- (1.5-mm-) thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a cross-laminated polyethylene film covered with aluminum-foil facing.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Polyguard Products, Inc.; Alumaguard 60.

2.11 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Compac Corporation; 104 and 105.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 2. Width: 3 inches (75 mm).
 3. Thickness: 11.5 mils (0.29 mm).
 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 491 AWF FSK.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 c. Compac Corporation; 110 and 111.
 d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 2. Width: 3 inches (75 mm).
 3. Thickness: 6.5 mils (0.16 mm).
 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.
 2. Width: 2 inches (50 mm).
 3. Thickness: 6 mils (0.15 mm).
 4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
 5. Elongation: 500 percent.
 6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 488 AWF.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 c. Compac Corporation; 120.
 d. Venture Tape; 3520 CW.
 2. Width: 2 inches (50 mm).
 3. Thickness: 3.7 mils (0.093 mm).
 4. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
 5. Elongation: 5 percent.
 6. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.

2.12 SECUREMENTS

A. Bands:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
2. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 3/4 inch (19 mm) wide with wing seal or closed seal.

B. Insulation Pins and Hangers:
1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- (3.5-mm-) diameter shank, length to suit depth of insulation indicated.
 a. Products: Subject to compliance with requirements, provide one of the following:
 1) AGM Industries, Inc.; CWP-1.
 2) GEMCO; CD.
 3) Midwest Fasteners, Inc.; CD.
 4) Nelson Stud Welding; TPA, TPC, and TPS.
2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- (3.5-mm-) diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch (38-mm) galvanized carbon-steel washer.
 a. Products: Subject to compliance with requirements, provide one of the following:
 1) AGM Industries, Inc.; CWP-1.
 2) GEMCO; Cupped Head Weld Pin.
 3) Midwest Fasteners, Inc.; Cupped Head.
 4) Nelson Stud Welding; CHP.
3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Products: Subject to compliance with requirements, provide one of the following:
 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
 2) GEMCO; Perforated Base.
 3) Midwest Fasteners, Inc.; Spindle.
 b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 c. Spindle: Copper- or zinc-coated, low-carbon steel, Aluminum or Stainless steel, fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.
 D. Wire: 0.062-inch (1.6-mm) soft-annealed, galvanized steel.
 1. Manufacturers: Subject to compliance with requirements, provide one of the following:

2.13 CORNER ANGLES
A. PVC Corner Angles: 30 mils (0.8 mm) thick, minimum 1 by 1 inch (25 by 25 mm), PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.
B. Aluminum Corner Angles: 0.040 inch (1.0 mm) thick, minimum 1 by 1 inch (25 by 25 mm), aluminum according to ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS
A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
E. Install multiple layers of insulation with longitudinal and end seams staggered.
F. Keep insulation materials dry during application and finishing.
G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
H. Install insulation with least number of joints practical.
I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS
A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.
B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 4. Seal jacket to wall flashing with flashing sealant.
C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).
1. Comply with requirements in Division 07 Section "Penetration Firestopping" firestopping and fire-
resistive joint sealers.

E. Insulation Installation at Floor Penetrations:
 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves
 and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap
damper sleeve and duct insulation at least 2 inches (50 mm).
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section
 "Penetration Firestopping."

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION
 A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings
 in insulation that allow passage of air to surface being insulated.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION
 A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 1. Apply adhesive according to manufacturer's recommended coverage rates per unit area, for 100
 percent coverage of duct and plenum surfaces.
 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-
 discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along
 longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints,
 and 16 inches (400 mm) o.c.
 b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400
 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional
 pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not over compress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation
 surface. Cover exposed pins and washers with tape matching insulation facing.
 g. Overlap unfaced blankets a minimum of 2 inches (50 mm) on longitudinal seams and end joints.
 At end joints, secure with steel bands spaced a maximum of 18 inches (450 mm) o.c.
 h. Install insulation on rectangular duct elbows and transitions with a full insulation section for each
 surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to
 fit the elbow.
 i. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-
 (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of
 stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.
 B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100
 percent coverage of duct and plenum surfaces.
 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-
 discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along
 longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints,
 and 16 inches (400 mm) o.c.
b. On duct sides with dimensions larger than 18 inches (450 mm), space pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.

c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.

d. Do not overcompress insulation during installation.

e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.

b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches (75 mm).

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-(150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch (50-mm) overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch- (1.6-mm-) thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:

1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch (38-mm) laps at longitudinal seams and 3-inch- (75-mm-) wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.8 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."

3.9 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 DUCT INSULATION SCHEDULE, GENERAL
A. Plenums and Ducts Requiring Insulation:
 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed supply and outdoor air.
 3. Indoor, concealed return located in unconditioned space.
 4. Indoor, exposed return located in unconditioned space.
 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 6. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
 7. Indoor, concealed oven and warewash exhaust.
 8. Indoor, exposed oven and warewash exhaust.
 9. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 10. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 11. Outdoor, concealed supply and return.
 12. Outdoor, exposed supply and return.

B. Items Not Insulated:
 1. Fibrous-glass ducts.
 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 3. Factory-insulated flexible ducts.
 5. Flexible connectors.
 7. Factory-insulated access panels and doors.

3.12 INDOOR DUCT AND PLENUM INSULATION SCHEDULE
A. Concealed, round and flat-oval, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.

B. Concealed, round and flat-oval, return-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.

C. Concealed, round and flat-oval, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.

D. Concealed, round and flat-oval, exhaust-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.

E. Concealed, rectangular, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.

F. Concealed, rectangular, return-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.

G. Concealed, rectangular, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.

H. Concealed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket or board; thickness as required to achieve 2-hour fire rating.

I. Concealed, supply-air plenum insulation shall be one of the following:
 1. Flexible Elastomeric: 1 inch (25 mm) thick.
 2. Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 3. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 4. Polyolefin: 1 inch (25 mm) thick.

J. Concealed, return-air plenum insulation shall be one of the following:
 1. Flexible Elastomeric: 1 inch (25 mm) thick.
 2. Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 3. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 4. Polyolefin: 1 inch (25 mm) thick.

K. Concealed, outdoor-air plenum insulation shall be one of the following:
 1. Flexible Elastomeric: 1 inch (25 mm) thick.
 2. Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 3. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 4. Polyolefin: 1 inch (25 mm) thick.

L. Concealed, exhaust-air plenum insulation shall be one of the following:
 1. Flexible Elastomeric: 1 inch (25 mm) thick.
 2. Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 3. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 4. Polyolefin: 1 inch (25 mm) thick.

M. Exposed, round and flat-oval, supply-air duct insulation shall be one of the following:
 1. Double walled duct shall have interstitial insulation as specified in the section 233113 Metal Ducts.
 2. Single walled duct:
 a. No insulation required if temperature difference between supply air inside duct and room temperature is 10 deg. F. or less.
 b. Flexible Elastomeric: 1 inch (25 mm) thick.
 c. Polyolefin: 1 inch (25 mm) thick.

N. Exposed, round and flat-oval, return-air duct insulation shall be:
 1. No insulation required.

O. Exposed, round and flat-oval, outdoor-air duct insulation shall be one of the following:
 1. Double walled duct shall have interstitial insulation as specified in the section 233113 Metal Ducts.
 2. Single walled duct:
 a. No insulation required if temperature difference between supply air inside duct and room temperature is 10 deg. F. or less.
 b. Flexible Elastomeric: 1 inch (25 mm) thick.
 c. Polyolefin: 1 inch (25 mm) thick.

P. Exposed, round and flat-oval, exhaust-air duct insulation shall be:
 1. No insulation required.

Q. Exposed, rectangular, supply-air duct insulation shall be one of the following:
 1. Flexible Elastomeric: 1 inch (25 mm) thick.
2. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
3. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
4. Polyolefin: 1 inch (25 mm) thick.

R. Exposed, rectangular, return-air duct insulation shall be:
 1. No insulation required.

S. Exposed, rectangular, outdoor-air duct insulation shall be one of the following:
 1. Flexible Elastomeric: 1 inch (25 mm) thick.
 2. Mineral-Fiber Blanket: 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-6 or better.
 3. Polyolefin: 1 inch (25 mm) thick.

T. Exposed, rectangular, exhaust-air duct insulation shall be:
 1. No insulation required.

U. Exposed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket or board; thickness as required to achieve 2-hour fire rating.

V. Exposed, supply-air plenum insulation shall be one of the following:
 1. Flexible Elastomeric: 1 inch (25 mm) thick.
 2. Polyolefin: 1 inch (25 mm) thick.

W. Exposed, return-air plenum insulation shall be one of the following:
 1. No insulation required.

X. Exposed, outdoor-plenum insulation shall be one of the following:
 1. Flexible Elastomeric: 1 inch (25 mm) thick.
 2. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-8 or better.
 3. Polyolefin: 1 inch (25 mm) thick.

Y. Exposed, exhaust-air plenum insulation shall be:
 1. No insulation required.

3.13 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option.

B. Exposed, round, supply-air duct insulation shall be one of the following:
 1. Flexible Elastomeric: 1-1/2 inches (38 mm) thick.
 2. Mineral-Fiber Blanket: 3 inches (75 mm) and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-8 or better.
 3. Polyolefin: 1-1/2 inches (38 mm) thick.

C. Exposed, round, return-air duct insulation shall be one of the following:
 1. Flexible Elastomeric: 1-1/2 inches (38 mm) thick.
 2. Mineral-Fiber Blanket: 3 inches (75 mm) and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-8 or better.
 3. Polyolefin: 1-1/2 inches (38 mm) thick.

D. Exposed, rectangular, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 3 inches (75 mm) and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-8 or better.
 2. Mineral-Fiber Board: 3 inches (75 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-8 or better.

E. Exposed, rectangular, return-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 3 inches (75 mm) and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-8 or better.
 2. Mineral-Fiber Board: 3 inches (75 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-8 or better.

F. Exposed, supply-air plenum insulation shall be one of the following:
 1. Flexible Elastomeric: 1-1/2 inches (38 mm) thick.
 2. Mineral-Fiber Blanket: 3 inches (75 mm) and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-8 or better.
3. Mineral-Fiber Board: 3 inches (75 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-8 or better.
4. Polyolefin: 1-1/2 inches (38 mm) thick.

G. Exposed, return-air plenum insulation shall be one of the following:
1. Flexible Elastomeric: 1-1/2 inches (38 mm) thick.
2. Mineral-Fiber Blanket: 3 inches (75 mm) and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-8 or better.
3. Mineral-Fiber Board: 3 inches (75 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density or equivalent combination of thickness and density to achieve an R value of R-8 or better.
4. Polyolefin: 1-1/2 inches (38 mm) thick.

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE
A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
B. If more than one material is listed, selection from materials listed is Contractor’s option.
C. Ducts and Plenums, Concealed:
1. None.
D. Ducts and Plenums, Exposed, ABOVE 5’:
1. PVC: 20 mils (0.5 mm) thick.
2. Aluminum, Smooth, Corrugated or Stucco Embossed: 0.020 inch (0.51 mm) thick.
3. Painted Aluminum, Smooth, Corrugated or Stucco Embossed: 0.020 inch (0.51 mm) thick.
E. Ducts and Plenums, Exposed, BELOW 5’:
1. Aluminum, Smooth, Corrugated or Stucco Embossed: 0.032 inch (0.81 mm) thick.
2. Painted Aluminum, Smooth, Corrugated or Stucco Embossed: 0.032 inch (0.81 mm) thick.

3.15 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE
A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
B. If more than one material is listed, selection from materials listed is Contractor's option.
C. Ducts and Plenums, Concealed:
1. PVC, Color-Coded by System: 20 mils (0.5 mm) thick.
D. Ducts and Plenums, Exposed, up to 48 Inches (1200 mm) in Diameter or with Flat Surfaces up to 72 Inches (1800 mm):
1. Aluminum, Smooth, Corrugated or Stucco Embossed: 0.032 inch (0.81 mm) thick.
2. Painted Aluminum, Smooth, Corrugated or Stucco Embossed: 0.032 inch (0.81 mm) thick.
E. Ducts and Plenums, Exposed, Larger Than 48 Inches (1200 mm) in Diameter or with Flat Surfaces Larger Than 72 Inches (1800 mm):
1. Aluminum, Smooth or Stucco Embossed with 1-1/4-Inch- (32-mm-) Deep Corrugations.

END OF SECTION
SECTION 23-31-13
METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Single-wall rectangular ducts and fittings.
2. Single-wall round ducts and fittings.
4. Duct liner.
5. Sealants and gaskets.
6. Hangers and supports.
7. Seismic-restraint devices.
B. Related Sections:
1. Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
2. Division 23 Section "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS
A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
B. Structural Performance: Duct hangers, supports and seismic restraints, (if required), shall withstand the effects of gravity and seismic loads, (if required), and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
 1. Seismic Hazard Level A: Seismic force to weight ratio, 0.48.
 2. Seismic Hazard Level B: Seismic force to weight ratio, 0.30.
 3. Seismic Hazard Level C: Seismic force to weight ratio, 0.15.
C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

1.4 SUBMITTALS
A. Product Data: For each type of the following products:
 1. Liners and adhesives.
 2. Sealants and gaskets.
B. Shop Drawings:
 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 2. Factory- and shop-fabricated ducts and fittings.
 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 4. Elevation of top of ducts.
 5. Dimensions of main duct runs from building grid lines.
 6. Fittings.
 7. Reinforcement and spacing.
 8. Seam and joint construction.
 9. Penetrations through fire-rated and other partitions.
 10. Equipment installation based on equipment being used on Project.
 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.
C. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 2. Suspended ceiling components.
 3. Structural members to which duct will be attached.
 4. Size and location of initial access modules for acoustical tile.
 5. Penetrations of smoke barriers and fire-rated construction.
 6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

D. Welding certificates.
E. Field quality-control reports.

1.5 QUALITY ASSURANCE
B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS
2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS
A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-5, "Longitudinal Seams - Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS
A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Lindab Inc.
 b. McGill AirFlow LLC.
 c. SEMCO Incorporated.
 d. Sheet Metal Connectors, Inc.
 e. Spiral Manufacturing Co., Inc.
B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).
C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Transverse Joints - Round Duct," for static-pressure class,
applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches (1524 mm) in Diameter: Flanged.

D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Seams - Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches (2286 mm) in diameter with butt-welded longitudinal seams.
2. Fabricate flat-oval ducts larger than 72 inches (1830 mm) in width (major dimension) with butt-welded longitudinal seams.

E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
1. Galvanized Coating Designation: G60 (Z180).
2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.

D. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

E. Aluminum Sheets: Comply with ASTM B 209 (ASTM B 209M) Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.

F. Factory- or Shop-Applied Antimicrobial Coating (If specified on drawings):
1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
5. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.

G. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

H. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.4 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation; Insulation Group.
 b. Johns Manville.
 c. Knauf Insulation.
 d. Owens Corning.
2. Maximum Thermal Conductivity:
 a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F (0.039 W/m x K) at 75 deg F (24 deg C) mean temperature.
b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F (0.033 W/m x K) at 75 deg F (24 deg C) mean temperature.

3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

4. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 a. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA Inc.
 b. Armacell LLC.
 c. Rubatex International, LLC
 2. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
 3. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 a. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Insulation Pins and Washers:
 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch (38-mm) galvanized carbon-steel washer.
 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.

D. Shop Application of Duct Liner: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-19, "Flexible Duct Liner Installation."
 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 3. Butt transverse joints without gaps, and coat joint with adhesive.
 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm (12.7 m/s).
 7. Secure liner with mechanical fasteners 4 inches (100 mm) from corners and at intervals not exceeding 12 inches (300 mm) transversely; at 3 inches (75 mm) from transverse joints and at intervals not exceeding 18 inches (450 mm) longitudinally.
 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm (12.7 m/s) or where indicated.
 9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 a. Sheet Metal Inner Duct Perforations: 3/32-inch (2.4-mm) diameter, with an overall open area of 23 percent.
 10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.
2.5 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:
1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
2. Tape Width: 4 inches (102 mm).
5. Mold and mildew resistant.
6. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
7. Service: Indoor and outdoor.
8. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
10. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Water-Based Joint and Seam Sealant:
1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Solvent-Based Joint and Seam Sealtant:
1. Application Method: Brush on.
2. Base: Synthetic rubber resin.
4. Solids Content: Minimum 60 percent.
5. Shore A Hardness: Minimum 60.
7. Mold and mildew resistant.
8. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
9. VOC: Maximum 395 g/L.
10. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive or negative.
11. Service: Indoor or outdoor.
12. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

E. Flanged Joint Sealant: Comply with ASTM C 920.
2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

G. Round Duct Joint O-Ring Seals:
1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg (0.14 L/s per sq. m at 250 Pa) and shall be rated for 10-inch wg (2500-Pa) static-pressure class, positive or negative.
2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS
A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1 (Table 4-1M), "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."
D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.7 SEISMIC-RESTRAINT DEVICES
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Cooper B-Line, Inc.; a division of Cooper Industries.
 2. Ductmate Industries, Inc.
 3. Hilti Corp.
 5. Loos & Co.; Cableware Division.
 7. TOLCO; a brand of NIBCO INC.
 8. Unistrut Corporation; Tyco International, Ltd.
B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
C. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.
D. Restraint Cables: ASTM A 603, galvanized-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.
E. Hanger Rod Stiffener: Reinforcing steel angle clamped to hanger rod.
F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION
3.1 DUCT INSTALLATION
A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.
C. Install round and flat-oval ducts in maximum practical lengths.
D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches (38 mm).

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA’s "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT

A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease, and sloped a minimum of 2 percent to drain grease back to the hood.

B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 12 feet (3.7 m) in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings. Locate access panel on top or sides of duct a minimum of 1-1/2 inches (38 mm) from bottom of duct.

C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

3.4 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible":

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg (500 Pa): Seal Class B.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg (500 Pa) and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg (500 Pa): Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.
3.5 **HANGER AND SUPPORT INSTALLATION**

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Hangers and Supports."

B. **Building Attachments:** Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches (100 mm) thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.
 5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. **Hanger Spacing:** Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 4-1 (Table 4-1M), "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches (610 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.

D. **Hangers Exposed to View:** Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum interval of 16 feet (5 m).

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 **SEISMIC-RESTRAINT-DEVICE INSTALLATION (If required)**

A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
 1. Space lateral supports a maximum of 40 feet (12 m) o.c., and longitudinal supports a maximum of 80 feet (24 m) o.c.
 2. Brace a change of direction longer than 12 feet (3.7 m).

B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.

C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install cable restraints on ducts that are suspended with vibration isolators.

E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction.

F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.

G. **Drilling for and Setting Anchors:**
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.7 **CONNECTIONS**

A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.8 **PAINTING**

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and
application requirements are specified in Division 09 painting Sections.

3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:
 2. Test the following systems:
 a. Ducts with a Pressure Class Higher Than 3-Inch wg (750 Pa): Test representative duct sections, selected by Engineer from sections installed, totaling no less than 25 percent of total installed duct area for each designated pressure class.
 b. Supply Ducts with a Pressure Class of 2-Inch wg (500 Pa) 3-Inch wg (750 Pa) or Higher: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 c. Return Ducts with a Pressure Class of 2-Inch wg (500 Pa) or Higher: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.

3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.

4. Test for leaks before applying external insulation.

5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.

6. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:
 1. Visually inspect duct system to ensure that no visible contaminants are present.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.10 DUCT CLEANING

A. Clean duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.
 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Division 23 Section "Air Duct Accessories" for access panels and doors.
 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:
 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:
 1. Air outlets and inlets (registers, grilles, and diffusers).
 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:
 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum
device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging
integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet.
Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable
material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse
coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present.
Apply antimicrobial agents according to manufacturer's written instructions after removal of surface
deposits and debris.

3.11 START UP
A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for
HVAC."

3.12 DUCT SCHEDULE
A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:
 1. Underground Ducts: Concrete-encased, PVC-coated, galvanized sheet steel with thicker coating
 on duct exterior OR stainless steel.
B. Supply Ducts:
 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive 1-inch wg (250 Pa).
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round: 12.
 2. Ducts Connected to Constant-Volume Air-Handling Units:
 a. Pressure Class: Positive 2-inch wg (500 Pa) inch wg (750 Pa).
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round: 12.
 3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 a. Pressure Class: Positive 3-inch wg (750 Pa).
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round: 6.
 4. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive 3-inch wg (750 Pa).
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round: 6.
C. Return Ducts:
 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 1-inch wg (250 Pa).
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round: 12.
 2. Ducts Connected to Air-Handling Units <Insert equipment>:
 a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round: 12.
 3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round: 12.
D. Exhaust Ducts:
 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 1-inch wg (250 Pa).
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round: 12.
 2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 1-inch wg (250 Pa).
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round: 12.
 a. Exposed to View: Type 304, stainless-steel sheet, No. 3 finish.
 c. Welded seams and joints.
 d. Pressure Class: Positive or negative 3-inch wg (750 Pa).
 e. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 f. SMACNA Leakage Class: 3.
 4. Ducts Connected to Dishwasher Hoods:
 a. Type 304, stainless-steel sheet.
 b. Exposed to View: No. 3
 c. Concealed: No. 2D finish.
 d. Welded seams and flanged joints with watertight EPDM gaskets.
 e. Pressure Class: Positive or negative 2-inch wg (500 Pa).
 f. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 g. SMACNA Leakage Class: 3.

E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units
 a. Pressure Class: Positive or negative 1-inch wg (250 Pa).
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round: 12.
 2. Ducts Connected to Air-Handling Units <Insert equipment>:
 a. Pressure Class: Positive or negative 1-inch wg (250 Pa).
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round: 12.
 3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 1-inch wg (250 Pa).
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round: 12.

F. Intermediate Reinforcement:
 2. PVC-Coated Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Match duct material.
 3. Stainless-Steel Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Match duct material.

G. Liner:
 1. Supply Air Ducts: Fibrous glass, Type I or Flexible elastomeric, 1-1/2 inches (38 mm) thick.
 2. Return Air Ducts: Fibrous glass, Type I or Flexible elastomeric, 1-1/2 inches (38 mm) thick.
 3. Exhaust Air Ducts: Fibrous glass, Type I or Flexible elastomeric, 1 inch (25 mm) thick.
 4. Supply Fan Plenums: Fibrous glass, Type II or Flexible elastomeric, 1-1/2 inches (38 mm) thick.
 5. Return- and Exhaust-Fan Plenums: Fibrous glass, Type II or Flexible elastomeric, 2 inches (51 mm) thick.
 6. Transfer Ducts: Fibrous glass, Type I or Flexible elastomeric, 1 inch (25 mm) thick.
H. Double-Wall Duct Interstitial Insulation:
 1. Supply Air Ducts: 1-1/2 inches (38 mm) thick.
 2. Return Air Ducts: 1-1/2 inches (38 mm) thick.
 3. Exhaust Air Ducts: 1-1/2 inches (38 mm) thick.
I. Elbow Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 a. Velocity 1000 fpm (5 m/s) or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s):
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 c. Velocity 1500 fpm (7.6 m/s) or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-3, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Velocity 1000 fpm (5 m/s) or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 2) Velocity 1000 to 1500 fpm (5 to 7.6 m/s): 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 3) Velocity 1500 fpm (7.6 m/s) or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 b. Round Elbows, 12 Inches (305 mm) and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches (356 mm) and Larger in Diameter: Standing seam or Welded.
J. Branch Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-6, "Branch Connections."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.
 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity 1000 fpm (5 m/s) or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s): Conical tap.
 c. Velocity 1500 fpm (7.6 m/s) or Higher: 45-degree lateral.

END OF SECTION
SECTION 23-33-00
AIR DUCT ACCESSORIES

PART 1 - GENERAL
1.1 SUMMARY
A. This Section includes the following:
 1. Manual volume dampers
 2. Fire dampers
 3. Ceiling radiation dampers
 4. Combination fire and smoke dampers
 5. Duct-mounting access doors.
 6. Flexible connectors.
 7. Flexible ducts.

1.2 QUALITY ASSURANCE

1.3 SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 2. Special fittings.
 4. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 5. Wiring Diagrams: For power, signal, and control wiring.
C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
D. Source quality-control reports.
E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

PART 2 - PRODUCTS
2.1 SHEET METAL MATERIALS
A. Comply with SMACNA’s "HVAC Duct Construction Standards--Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods, unless otherwise indicated.
B. Galvanized Sheet Steel: Lock-forming quality; complying with ASTM A 653/A 653M and having G60 (Z180) coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view.
C. Stainless Steel: ASTM A 480/A 480M.
F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
G. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.2 MANUAL VOLUME DAMPERS
A. Standard, Steel, Manual Volume Dampers:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
2.3 FIRE DAMPERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:

2. McGill AirFlow LLC.
3. METALAIRE, Inc.
4. Nailor Industries Inc.
5. NCA Manufacturing, Inc.
6. Pottorff; a division of PCI Industries, Inc.
7. Prefco; Perfect Air Control, Inc.
8. Ruskin Company.

B. Type: Dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg (1-kPa) static pressure class and minimum 2000-fpm (10-m/s) velocity.

D. Fire Rating: 1-1/2 and/or 3 hours.

E. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch- (0.85-mm-) thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 1. Minimum Thickness: 0.138 inch (3.5 mm) or 0.39 inch (9.9 mm) thick, as indicated, and of length to suit application.
 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 0.024-inch- (0.61-mm) or 0.034-inch- (0.85-mm-) thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- (0.85-mm-) thick, galvanized-steel blade connectors.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
J. Heat-Responsive Device: Electric, replaceable link and switch package, factory installed, 165 deg F (74 deg C) rated.

2.4 CEILING RADIATION DAMPERS
A. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 1. Air Balance Inc.; a division of Mestek, Inc.
 2. Cesco Products; a division of Mestek, Inc.
 3. Nailor Industries Inc.
 4. Pottorff.
 5. Prefco; Perfect Air Control, Inc.
 6. Ruskin Company.
B. General Requirements:
 1. Labeled according to UL 555C by an NRTL.
 2. Comply with construction details for tested floor- and roof-ceiling assemblies as indicated in UL's "Fire Resistance Directory."
C. Frame: Galvanized sheet steel, round or rectangular, style to suit ceiling construction.
D. Blades: Galvanized sheet steel with refractory insulation.
E. Heat-Responsive Device: Replaceable, 165 deg F (74 deg C) rated, fusible links.
F. Fire Rating: 1, 2 or 3 hours.

2.5 COMBINATION FIRE AND SMOKE DAMPERS
A. Basis-of-Design Product: Subject to compliance with requirements, provide product by one of the following:
 1. Air Balance Inc.; a division of Mestek, Inc.
 2. Cesco Products; a division of Mestek, Inc.
 4. Nailor Industries Inc.
 5. Pottorff.
 6. Ruskin Company.
B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.
C. Closing rating in ducts up to 4-inch wg (1-kPa) static pressure class and minimum 2000-fpm (10-m/s) velocity.
D. Fire Rating: 1-1/2 and 3 hours. Type 304, stainless-steel dampers are available for corrosive atmospheres.
E. Frame: Hat-shaped, 16 Ga 5 inches x minimum 16 gage (127 x minimum 1.6 mm) roll formed, galvanized steel hat-shaped channel, reinforced at corners. Structurally equivalent to 13 gage (2.3 mm) U-channel type frame. Retain one of two "Heat-Responsive Device" paragraphs below for either fusible or resettable links.
F. Heat-Responsive Device: Resettable, 165 deg F (74 deg C) rated, fire-closure device.
G. Heat-Responsive Device: Electric resettable device and switch package, factory installed, rated.
H. Smoke Detector: Integral, factory wired for single-point connection.
I. Blades: Roll-formed, horizontal, overlapping, 0.063-inch- (1.6-mm-) thick, galvanized sheet steel.
J. Leakage: Class I.
K. Rated pressure and velocity to exceed design airflow conditions.
L. Mounting Sleeve: Factory-installed, 0.05-inch- (1.3-mm-) thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
M. Master control panel for use in dynamic smoke-management systems.
N. Damper Motors: two-position action.
O. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 230900 "Instrumentation and Control for HVAC."
 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. \times \text{lb}f (17 \text{ N} \times \text{m}) and breakaway torque rating of 150 in. \times \text{lb}f (17 \text{ N} \times \text{m}).

5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F (minus 40 deg C).

6. Nonspring-Return Motors: For dampers larger than 25 sq. ft. (2.3 sq. m), size motor for running torque rating of 150 in. \times \text{lb}f (17 \text{ N} \times \text{m}) and breakaway torque rating of 300 in. \times \text{lb}f (34 \text{ N} \times \text{m}).

7. Electrical Connection: 115 V, single phase, 60 Hz.

2.6 DUCT-MOUNTING ACCESS DOORS
A. General Description: Fabricate doors airtight and suitable for duct pressure class.
B. Door: Double wall, duct mounting, and rectangular; fabricated of galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class. Include vision panel where indicated. Include 1-by-1-inch (25-by-25-mm) butt or piano hinge and cam latches.
1. Manufacturers:
 a. Ductmate Industries, Inc.
 b. Flexmaster U.S.A., Inc.
 c. Greenheck.
 e. Nailor Industries Inc.
 f. Ventfabrics, Inc.
 g. Ward Industries, Inc.
2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
3. Provide number of hinges and locks as follows:
 a. Less Than 12 Inches (300 mm) Square: Secure with two sash locks.
 b. Up to 18 Inches (450 mm) Square: Two hinges and two sash locks.
 c. Up to 24 by 48 Inches (600 by 1200 mm): Three hinges and two compression latches with outside and inside handles.
 d. Sizes 24 by 48 Inches (600 by 1200 mm) and Larger: One additional hinge.
C. Pressure Relief Access Door: Double wall and duct mounting; fabricated of galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class. Include vision panel where indicated, latches, and retaining chain.
1. Manufacturers:
 a. CESCO Products.
 b. Ductmate Industries, Inc.
 c. Greenheck.
 d. KEES, Inc.
 f. Ruskin
2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
D. Seal around frame attachment to duct and door to frame with neoprene or foam rubber.
E. Insulation: 1-inch- (25-mm-) thick, fibrous-glass or polystyrene-foam board.

2.7 FLEXIBLE CONNECTORS
A. Manufacturers:
 1. Ventaire.
 2. Z-Flex.
 3. Safe Air.
B. General Description: Flame-retardant or noncombustible fabrics, coatings, and adhesives complying with UL 181, Class 1.
C. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches (89 mm) wide attached to two strips of 2-3/4-inch- (70-mm-) wide, 0.028-inch- (0.7-mm-) thick, galvanized sheet steel or 0.032-inch- (0.8-mm-) thick aluminum sheets. Select metal compatible with ducts.
 1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
 2. Tensile Strength: 480 lb/inch (84 N/mm) in the warp and 360 lb/inch (63 N/mm) in the filling.
3. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).

2.8 FLEXIBLE DUCTS
A. Manufacturers:
 1. Ductmate Industries, Inc.
 2. Flexmaster U.S.A., Inc.
 3. Hart & Cooley, Inc.
B. Insulated-Duct Connectors: UL 181, Class 1, multiple layers of aluminum laminate supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor barrier film.
 1. Pressure Rating: 10-inch wg (2500 Pa) positive and 1.0-inch wg (250 Pa) negative.
 2. Maximum Air Velocity: 4000 fpm (20.3 m/s).
 3. Temperature Range: Minus 20 to plus 210 deg F (Minus 28 to plus 99 deg C).
C. Flexible Duct Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes 3 through 18 inches (75 to 450 mm) to suit duct size.

PART 3 - EXECUTION
3.1 APPLICATION AND INSTALLATION
A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards-Metal and Flexible" for metal ducts.
B. Provide duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
C. Install duct access doors to allow for inspecting, adjusting, and maintaining accessories:
 1. Downstream from volume dampers, turning vanes, and equipment.
D. Install flexible connectors immediately adjacent to equipment in ducts associated with fans and motorized equipment supported by vibration isolators.
END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Direct driven backward inclined centrifugal inline fans.

1.3 PERFORMANCE REQUIREMENTS
A. Project Altitude: Base fan-performance ratings on sea level.
B. Operating Limits: Classify according to AMCA 99.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
1. Certified fan performance curves with system operating conditions indicated.
2. Certified fan sound-power ratings.
3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
4. Material thickness and finishes, including color charts.
5. Dampers, including housings, linkages, and operators.
6. Roof curbs.
7. Fan speed controllers.
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
2. Wiring Diagrams: For power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
1. Roof framing and support members relative to duct penetrations.
2. Ceiling suspension assembly members.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Belts: One set(s) for each belt-driven unit.

1.8 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.
C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.
1.9 **COORDINATION**

A. Coordinate size and location of structural-steel support members.
B. Coordinate sizes and locations of concrete bases with actual equipment provided.
C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 **DIRECT DRIVEN BACKWARD INCLINED CENTRIFUGAL INLINE FANS**

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Breidert Air Products.
 4. Loren Cook Company.
 5. PennBarry.

B. Housing:
 1. Construction material: Aluminum
 2. Square design constructed of heavy gauge galvanized steel and shall include square duct mounting collars
 3. Housing and bearing supports shall be constructed of heavy gauge bolted and welded steel construction to prevent vibration and to rigidly support the shaft and bearing assembly.

C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

D. AC induction Motor:
 1. Motor enclosures: Open drip-proof type
 2. Motors are permanently lubricated, heavy duty ball bearing type to match with the fan load and pre-wired to the specific voltage and phase.

E. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside or outside fan housing, factory wired through an internal aluminum conduit.
 3. Bird Screens: Removable, 1/2-inch (13-mm) mesh, aluminum or brass wire.
 4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.

2.2 **DIRECT DRIVE CEILING MOUNTED CENTRIFUGAL EXHAUST FANS**

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Breidert Air Products.
 4. Loren Cook Company.
 5. PennBarry.

B. Housing:
 1. Square design constructed of heavy gauge galvanized steel and shall include square duct mounting collars
 2. Housing and bearing supports shall be constructed of heavy gauge bolted and welded steel construction to prevent vibration and to rigidly support the shaft and bearing assembly.

C. Fan Wheels:
 1. Forward curved centrifugal wheel
 2. Constructed of calcium carbonate filled polypropylene
 3. Statically and dynamically balanced in accordance to AMCA Standard 204-05

D. AC induction Motor:
 1. Motor enclosures: Open drip-proof type
 2. Motors are permanently lubricated, heavy duty ball bearing type to match with the fan load and pre-wired to the specific voltage and phase.

E. Accessories:
1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to 60 percent.
2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside or outside fan housing, factory wired through an internal aluminum conduit.
3. Bird Screens: Removable, 1/2-inch (13-mm) mesh, aluminum or brass wire.
4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
5. Wall Discharge Cap

2.3 MOTORS
A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
B. Enclosure Type: Totally enclosed, fan cooled.

2.4 SOURCE QUALITY CONTROL
A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION
3.1 INSTALLATION
A. Install power ventilators level and plumb.
B. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
C. Support suspended units from structure using threaded steel rods and elastomeric hangers. Install units with clearances for service and maintenance.

3.2 CONNECTIONS
A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."
B. Install ducts adjacent to power ventilators to allow service and maintenance.
C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL
A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
B. Tests and Inspections:
 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 3. Verify that cleaning and adjusting are complete.
 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 5. Adjust belt tension.
 6. Adjust damper linkages for proper damper operation.
 7. Verify lubrication for bearings and other moving parts.
 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
10. Shut unit down and reconnect automatic temperature-control operators.
11. Remove and replace malfunctioning units and retest as specified above.
C. Test and adjust controls and safety. Replace damaged and malfunctioning controls and equipment.
D. Prepare test and inspection reports.

3.4 ADJUSTING
A. Adjust damper linkages for proper damper operation.
B. Adjust belt tension.
C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
D. Replace fan and motor pulleys as required to achieve design airflow.
E. Lubricate bearings.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Rectangular and square ceiling diffusers.
 2. Grilles/Registers
B. Related Sections:
 1. Division 08 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 2. Division 23 Section "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.
B. Samples for Initial Selection: For diffusers, registers, and grilles with factory-applied color finishes.
C. Samples for Verification: For diffusers, registers, and grilles, in manufacturer's standard sizes to verify color selected.
D. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 5. Duct access panels.
E. Source quality-control reports.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS
A. Rectangular and Square Ceiling Diffusers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carnes.
 b. Hart & Cooley Inc.
 c. Krueger.
 d. METALAIRE, Inc.
 e. Nailor Industries Inc.
 f. Price Industries.
 g. Titus.
 h. Tuttle & Bailey.
 2. Devices shall be specifically designed for variable-air-volume flows.
 3. Material: Steel or Aluminum.
 4. Finish: Baked enamel, white.
 5. Face Size: 24 by 24 inches (600 by 600 mm) and 12 by 12 inches (300 by 300 mm) or as specified on drawing schedules.
 6. Face Style: Four cone or Plaque.
 7. Mounting: Coordinate with architectural ceiling type.
8. Dampers: As specified on drawing schedules.

2.2 **GRILLES**

A. Adjustable Bar Register:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carnes.
 b. Hart & Cooley Inc.
 c. Krueger.
 d. METALAIRE, Inc.
 e. Nailor Industries Inc.
 f. Price Industries.
 g. Titus.
 h. Tuttle & Bailey.
2. Material: Steel or Aluminum.
4. Face Blade Arrangement: As specified on the drawing schedules.
5. Rear-Blade Arrangement: As specified on the drawing schedules
6. Frame: As specified on the drawing schedules.
7. Mounting Frame: Coordinate with architectural ceiling type
8. Mounting: Coordinate with architectural ceiling type.
9. Damper Type: Adjustable opposed blade

2.3 **SOURCE QUALITY CONTROL**

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 **EXAMINATION**

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 **INSTALLATION**

A. Install diffusers, registers, and grilles level and plumb.
B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 **ADJUSTING**

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION
SECTION 23-72-13
HEAT-WHEEL AIR-TO-AIR ENERGY-RECOVERY EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY
A. This section includes heat-wheel air-to-air energy recovery equipment for indoor installation.
B. Related sections include the following:
 1. Section 22 00 00: Scope of Work
 2. Section 22 01 00: General Provisions
 3. Section 22 07 00: Insulation
 4. Section 22 10 00: Plumbing
 5. Section 23 09 00: Controls and Instrumentation
 6. Section 23 00 00: Electrical

1.2 SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

1.3 QUALITY ASSURANCE
A. Source Limitations: Obtain unit with all appurtenant components or accessories from a single manufacturer.
B. For the actual fabrication, installation, and testing of work under this section, use only thoroughly trained and experienced workers completely familiar with the items required and with the manufacturer's current recommended methods of installation.
C. Product Options: Drawings must indicate size, profiles and dimensional requirements of Energy Recovery Units and are to be based on the specific system indicated. Refer to Division 1 Section “Product Requirements”.
D. Certifications:
 1. Blowers shall be AMCA certified for airflow.
 2. Entire unit shall be ETL Certified per U.L. 1995 and bear an ETL sticker.
 3. Energy Wheel shall be AHRI Certified, per Standard 1060.

1.4 COORDINATION
A. Coordinate size and location of all building penetrations required for installation of each unit and associated plumbing and electrical systems.
B. Coordinate sequencing of construction of associated HVAC, electrical supply.

1.5 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 1. Warranty Period:
 a. For Compressor: One year(s) from date of Substantial Completion or standard manufacturer compressor warranty, whichever is longer.
 b. For Parts: One year(s) from date of Substantial Completion or standard manufacturer compressor warranty, whichever is longer.
 c. For Labor: One year(s) from date of Substantial Completion or standard manufacturer compressor warranty, whichever is longer.
PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on or comparable product by one of the following:
1. Greenheck.
2. Ruskin.
3. LG.
4. YORK, a Johnson Controls company.

2.2 MANUFACTURED UNITS
A. Unit shall be fully assembled at the factory and consist of an insulated metal cabinet, energy wheel, motorized intake damper, motorized exhaust damper, sensors, service receptacle, frost control, electric preheater, filter assembly for intake and exhaust air, supply air blower assembly, exhaust air blower assembly and an electrical control center. All specified components and internal accessories factory installed and tested and prepared for single-point high voltage connection.

2.3 CABINET
A. Materials: Formed single wall insulated metal cabinet, fabricated to permit access to internal components for maintenance.
 1. Outside casing: 18 gauge, galvanized (G90) steel meeting ASTM A653 for components that do not receive a painted finish.
 2. Internal assemblies: [18 gauge, galvanized (G90) steel] except for motor supports which shall be minimum 14 gauge galvanized (G90) steel.
B. Cabinet Insulation: Comply with NFPA 90A and NFPA 90B and erosion requirements of UL 181.
 1. Materials: Fiberglass insulation. If insulation other than fiberglass is used, it must also meet the Fire Hazard Classification shown below.
 a. Thickness: 1 inch (25 mm)
 b. Fire Hazard Classification: Maximum flame spread of 25 and smoke developed of 50, when tested in accordance with ASTM C 411.
 c. Location and application: Full coverage of entire cabinet exterior to include walls, roof and floor of unit. Insulation shall be of semi-rigid type and installed between inner and outer shells of all cabinet exterior components.
C. Energy wheel: Energy wheel shall be of total enthalpy, rotary air-to-air type and shall be an element of a removable energy wheel cassette. The cassette shall consist of a galvanized steel framework (designed to produce laminar air flow through the wheel), an energy wheel as specified and a motor and drive assembly. The cassette shall incorporate a pre-tensioned drive belt with a five year warranty. The wheel media shall be a polymer film matrix in a stainless steel framework and be comprised of individual segments that are removable for servicing. Silica gel desiccant shall be permanently bonded to the polymer film and shall be designed and constructed to permit cleaning and servicing. The energy wheel is to have a five year warranty. Performance criteria are to be as specified in AHRI Standard 1060, complying with the Combined Efficiency data in the submittal.
D. Supply Air and Exhaust Air blower assemblies: Blower assemblies consist of an electric motor and a blower. Assembly shall be mounted on heavy gauge galvanized rails and further mounted on 1.125 inch thick neoprene vibration isolators.
E. Control panel / connections: Energy Recovery Ventilator shall have an electrical control center where all high and low voltage connections are made. Control center shall be constructed to permit single-point high voltage power supply connections.
F. Frost control: electric preheater.
G. Motorized dampers / Exhaust Air, Intake Air: Motorized dampers of low leakagetype shall be factory installed.
H. Service receptacle: 120 VAC GFCI service outlet shall be factory-provided and installed by this contractor in a location designated by the A/E.

2.4 BLOWER
A. Blower section construction, Supply Air and Exhaust Air: Direct drive motor and blower shall be assembled with neoprene vibration isolation devices.
B. Blower assemblies: Shall be statically and dynamically balanced and designed for continuous operation at maximum rated fan speed and horsepower.

C. Centrifugal blower housing: Formed and reinforced steel panels to make curved scroll housing with shaped cutoff.

D. Forward curved blower (fan) wheels: Galvanized or aluminum construction with inlet flange and shallow blades curved forward in direction of airflow. Mechanically attached to shaft with set screws.

E. Blower performance shall be factory tested for flow rate, pressure, power, air density, rotation speed and efficiency. Ratings are to be established in accordance with AMCA 210, "Laboratory Methods of Testing Fans for Rating".

2.5 MOTORS

A. General: Blower motors greater than ¾ horsepower shall be “NEMA Premium™” unless otherwise indicated. Minimum compliance with EPAct minimum energy-efficiency standards for single speed ODP and TE enclosures is not acceptable. Motors shall be heavy-duty, permanently lubricated type to match the fan load and furnished at the specified voltage, phase and enclosure. Drives shall be sized for a minimum of 150% of driven horsepower and pulleys shall be fully machined cast-type, keyed and fully secured to the fan wheel and motor shafts. Electric motors of ten horsepower or less shall be supplied with an adjustable drive pulley. Comply with requirements in Division 23 05 13, matched with fan load.

B. Motors shall be 60 cycle, 1 phase 208 volts.

2.6 UNIT CONTROLS:

A. The unit shall be constructed so that it can function as a stand-alone heating and cooling system controlled by factory-supplied controllers, thermostats and sensors or it can be operated as a heating and cooling system controlled by a Building Management System (BMS). This unit shall be controlled by a factory-installed microprocessor programmable controller (DDC) that is connected to various optional sensors.

B. Unit shall incorporate a DDC controller with integral LCD screen that provides text readouts of status, operating settings and alarm conditions. DDC controller shall have a built-in keypad to permit operator to access read-out screens and change settings without the use of ancillary equipment, devices or software. DDC controllers that require the use of equipment or software that is not factory-installed in the unit are not acceptable. Alarm readouts consisting of flashing light codes are not acceptable. Owner-specified ventilating conditions can be input by means of pushbuttons.

1. Operating protocol: The DDC shall be factory-programmed for BACnet IP for monitoring of the unit’s status.

2. Operating protocol: The DDC shall be factory-programmed for BACnet IP for monitoring of the unit’s status and control of the unit’s functions.

C. Sensors

1. Room / Space Temperature Sensors
2. Dirty Filter Sensor

2.7 FILTERS

A. Unit shall have permanent metal filters located in the outdoor air intake and shall be accessible from the exterior of the unit. MERV8 disposable pleated filters shall be provided in the intake air stream and MERV8 filters in the exhaust air stream.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Prior to start of installation, examine area and conditions to verify correct location for compliance with installation tolerances and other conditions affecting unit performance. See unit IOM.

B. Examine roughing-in of plumbing, electrical and HVAC services to verify actual location and compliance with unit requirements. See unit IOM.

C. Proceed with installation only after all unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Installation shall be accomplished in accordance with these written specifications, project drawings, manufacturer’s installation instructions as documented in manufacturer’s IOM, Best Practices and all applicable building codes.
3.3 CONNECTIONS
A. In all cases, industry Best Practices shall be incorporated. Connections are to be made subject to the installation requirements shown above.
B. Duct installation and connection requirements are specified in Division 23 of this document.
C. Electrical installation requirements are specified in Division 26 of this document.

3.4 FIELD QUALITY CONTROL
A. Manufacturer’s Field Service: Engage a factory authorized service representative to inspect field assembled components and equipment installation, to include electrical and piping connections. Report results to A/E in writing. Inspection must include a complete startup checklist to include (as a minimum) the following: Completed Start-Up Checklists as found in manufacturer’s IOM.

3.5 START-UP SERVICE
A. Engage a factory authorized service representative to perform startup service. Clean entire unit, comb coil fins as necessary, and install clean filters. Measure and record electrical values for voltage and amperage. Refer to Division 23 “Testing, Adjusting and Balancing” and comply with provisions therein.

3.6 DEMONSTRATION AND TRAINING:
A. Engage a factory authorized service representative to train owner’s maintenance personnel to adjust, operate and maintain the entire unit. Refer to Division 01 Section Closeout Procedures and Demonstration and Training.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes indoor self-contained air-conditioning units consisting of packaged evaporator-fan and compressor-condenser components.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
 B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.
 B. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filters: TWO set(s) for each air-handling unit.
 2. Gaskets: ONE set(s) for each access door.
 3. Fan Belts: TWO set(s) for each air-handling unit fan.

1.7 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. ASHRAE Compliance:
 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
 2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - "Procedures," and Section 7 - "Construction and System Start-up."
 C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.8 COORDINATION
 A. Coordinate sizes and locations of concrete bases with actual equipment provided.
 B. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.
1.9 **WARRANTY**

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.

1. Warranty Period:
 a. For Compressor: One year(s) from date of Substantial Completion or standard manufacturer compressor warranty, whichever is longer.
 b. For Parts: One year(s) from date of Substantial Completion or standard manufacturer compressor warranty, whichever is longer.
 c. For Labor: One year(s) from date of Substantial Completion or standard manufacturer compressor warranty, whichever is longer.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Carrier.
2. DataAire.
3. ClimateWorx.

2.2 AIR COOLED PACKAGED UNITS

A. Blower Assembly

1. The evaporator blower assembly shall be a double width, double inlet, blower with belt drive and variable pitch sheave and self-aligning ball bearings rated for an average life of 100,000 hours.
2. The system shall be designed for draw through air arrangement to insure even air distribution over the entire face of the coil.
3. Air delivery as detailed on the project plans and schedule.

B. Cabinet and Frame:

1. The frame shall be constructed of 18 gauge welded tubular steel and be coated with a heavy corrosion inhibiting finish for long life. The side panels shall be of galvanized steel. The cabinet shall be insulated with one-quarter inch (1/4") thick, closed cell insulation.
2. An integral return air filter box with duct connection shall be factory installed.
3. The unit shall come in either vertical or horizontal air flow direction. The vertical air flow unit is to be ceiling mounted and sized to fit a standard 2ft x 4ft T-bar ceiling grid opening. The horizontal supply/return air unit is to be ceiling hung with duct work attached to supply and return openings.
4. The plenum (2.5 and 3 ton vertical unit only) shall be of cold rolled steel and painted in a cloud white finish. The plenum shall be field mounted.
5. Removal of the unit from the ceiling space shall not be required for access.

C. Filter: An integral return air filter box with duct connection shall be factory installed and contain 2-inch (2") thick MERV 8 filters (based on ASHRAE Std. 52.2).

D. Refrigerant Circuit:

1. The refrigeration system shall be self-contained, factory assembled, charged and tested package. No refrigerant piping connections shall be required. The unit shall contain an indoor evaporator and air-cooled indoor condensing section. Both sections shall be assembled within one cabinet and frame assembly. The units shall be mounted in the ceiling space with ducted supply and return air as required on the project drawings.
2. The indoor evaporator shall include a cooling coil constructed with copper tubes and aluminum fins for maximum heat transfer. A single refrigeration circuit shall contain an expansion valve with external equalization, filter drier and sight-glass.
3. The indoor air-cooled condensing unit includes the condenser coil which is constructed with copper tubes and aluminum fins for maximum heat transfer. A single refrigeration circuit includes a scroll compressor with a crankcase heater and high and low safety pressure switches. The scroll type compressor shall have internal overload protection. The high and low pressure safety switches are connected to the refrigerant system with a Schrader fitting that allows replacement without affecting the refrigerant charge, making recovery unnecessary. Units with capillary tube metering devices shall not be acceptable. The condenser fan assembly shall be direct drive, double inlet, double width centrifugal fan configuration. The fan shall be statically and dynamically balanced at the factory as a complete assembly to minimize vibration level of two mils in any plane. The fan shall
be located to draw air over the coil to insure even air distribution over the entire face of the coil for maximum coil performance.

4. Both the evaporator and condenser sections shall be provided with a condensate drain pan constructed of stainless steel and provide a positive drain to prevent standing water in the condensate pan.

E. Condensate Drain Pans:
1. Fabricated with a minimum one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 a. Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 b. Depth: A minimum of 2 inches (50 mm) deep.
2. Double-wall, Galvanized steel or stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
3. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple.
5. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

2.3 ACCESSORIES

A. Thermostat:
1. Compressor time delay.
2. 24-hour time control of system stop and start.
3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
4. Fan-speed selection including auto setting.

B. Automatic-reset timer to prevent rapid cycling of compressor.

C. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.

D. Drain Hose: For condensate.

E. Hot Gas Reheat: Provide units with hot gas reheat. The unit's hot gas discharge shall be used for reheat and maximum system efficiency.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install units level and plumb.
B. Install components using manufacturer’s standard mounting devices securely fastened to building structure.
C. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

A. Piping installation shall conform to manufacturers recommendations.
B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.
C. Duct Connections: Duct installation requirements are specified in Section 233113 "Metal Ducts." Drawings indicate the general arrangement of ducts. Connect supply and return ducts to split-system air-conditioning units with flexible duct connectors. Flexible duct connectors are specified in Section 233300 "Air Duct Accessories."

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
C. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 D. Remove and replace malfunctioning units and retest as specified above.
 E. Prepare test and inspection reports.

3.4 STARTUP SERVICE
 A. If required by manufacturer warrantee, engage a factory-authorized service representative to perform startup service. In not required by manufacturer warrantee, perform general startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION
 A. Train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
2. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.
B. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Filters: TWO set(s) for each air-handling unit.
2. Gaskets: ONE set(s) for each access door.
3. Fan Belts: TWO set(s) for each air-handling unit fan.

1.7 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. ASHRAE Compliance:
1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - "Procedures," and Section 7 - "Construction and System Start-up."
C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.8 COORDINATION
A. Coordinate sizes and locations of any and all bases with actual equipment provided.
B. Coordinate sizes and locations of wall penetrations, equipment supports, and roof penetrations with actual equipment provided.

1.9 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
1. Warranty Period:
a. For Compressor: One year(s) from date of Substantial Completion or standard manufacturer compressor warranty, whichever is longer.
b. For Parts: One year(s) from date of Substantial Completion or standard manufacturer compressor warranty, whichever is longer.
c. For Labor: One year(s) from date of Substantial Completion or standard manufacturer compressor warranty, whichever is longer.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on or comparable product by one of the following:
1. Frazer-Johnston;
3. Trane; a business of American Standard companies.
4. YORK; a Johnson Controls company.

2.2 INDOOR UNITS

A. Concealed Evaporator-Fan Components:
1. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
2. Insulation: Faced, glass-fiber duct liner.
4. Water Coil: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch (2.5 mm); leak tested to 300 psig (2070 kPa) underwater; with a two-position control valve.
6. Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.
7. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. Wiring Terminations: Connect motor to chassis wiring with plug connection.
8. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
10. Condensate Drain Pans:
 a. Fabricated with a minimum one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 2) Depth: A minimum of 2 inches (50 mm) deep.
 b. Double-wall, Galvanized steel or stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
 c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple.
 d. Pan-Top Surface Coating: Asphaltic waterproofing compound.
 e. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

B. Floor-Mounted, Evaporator-Fan Components:
1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect.
 a. Discharge Grille: Steel with surface-mounted frame or Welded steel bars forming a linear grille and welded into supporting panel.
b. Insulation: Faced, glass-fiber duct liner.
c. Drain Pans: Galvanized steel, with connection for drain; insulated.

2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 206/110.

3. Water Coil: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch (2.5 mm); leak tested to 300 psig (2070 kPa) underwater; with a two-position control valve.

5. Fan: Direct drive, centrifugal.

6. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 “Common Motor Requirements for HVAC Equipment.”
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.

7. **Air Filtration Section:**
 a. General Requirements for Air Filtration Section:
 1) Comply with NFPA 90A.
 2) Minimum Arrestance: According to ASHRAE 52.1 and MERV according to ASHRAE 52.2.
 3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.
 b. Disposable Panel Filters:
 1) Factory-fabricated, viscous-coated, flat-panel type.
 2) Thickness: 1 inch (25 mm).
 3) Merv according to ASHRAE 52.2: 5.
 4) Media: Interlaced glass fibers sprayed with nonflammable adhesive and antimicrobial agent.

2.3 **OUTDOOR UNITS**

A. Air-Cooled, Compressor-Condenser Components:
 1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
 2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 a. Compressor Type: Scroll.
 b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
 c. Refrigerant Charge: R-410A.
 d. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 206/110.
 4. Fan: Aluminum-propeller type, directly connected to motor.
 5. Motor: Permanently lubricated, with integral thermal-overload protection.
 6. Low Ambient Kit: Permits operation down to 45 deg F (7 deg C).

2.4 **ACCESSORIES**

A. Thermostat:
 1. Compressor time delay.
 2. 24-hour time control of system stop and start.
 3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 4. Fan-speed selection including auto setting.

B. Automatic-reset timer to prevent rapid cycling of compressor.
C. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.
D. Drain Hose: For condensate.

PART 3 - EXECUTION
3.1 INSTALLATION
A. Install units level and plumb.
B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
C. Install roof-mounted, compressor-condenser components on equipment supports as shown on drawings and drawing details. Anchor units to supports with removable, cadmium-plated fasteners.
D. Equipment Mounting:
1. Install ground-mounted, compressor-condenser components on cast-in-place concrete, pre manufactured concrete or polyethylene equipment base(s).
2. Comply with requirements for vibration isolation and seismic control devices as called for on the drawings.
E. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS
A. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.
B. Duct Connections: Duct installation requirements are specified in Section 233113 "Metal Ducts." Drawings indicate the general arrangement of ducts. Connect supply and return ducts to split-system air-conditioning units with flexible duct connectors. Flexible duct connectors are specified in Section 233300 "Air Duct Accessories."

3.3 FIELD QUALITY CONTROL
A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
B. Perform tests and inspections.
1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
C. Tests and Inspections:
1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
D. Remove and replace malfunctioning units and retest as specified above.
E. Prepare test and inspection reports.

3.4 STARTUP SERVICE
A. If required by manufacturer warrantee, engage a factory-authorized service representative to perform startup service. In not required by manufacturer warrantee, perform general startup service.
1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION
A. Train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION
SECTION 23-81-29
VARIABLE REFRIGERANT FLOW HVAC SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.
C. Samples for Initial Selection: For units with factory-applied color finishes.
D. Field quality-control reports.
E. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.
F. Warranty: Sample of special warranty.

1.4 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. ASHRAE Compliance:
 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."

1.5 COORDINATION
A. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete."
B. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.6 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 1. Warranty Period:
 a. For Compressor: 7 year(s) from date of Substantial Completion.
 b. For Parts: 5 year(s) from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Lennox International Inc.
 2. LG.
 3. Daikin
 4. Mitsubishi Electric & Electronics USA, Inc.; HVAC Advanced Products Division.

2.2 INDOOR UNITS

A. Wall-Mounted, Evaporator-Fan Components:
 1. Cabinet: Galvanized steel with removable panels on front and ends and discharge drain pans with drain connection.
 2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 210/240.
 3. Fan: Direct drive, centrifugal.
 4. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 d. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.
 5. Power: Electrical power for the indoor unit shall be supplied from the outdoor unit.
 7. Condensate Drain Pans:
 a. Provide a sloped condensate drain pan under each coil.
 b. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.
 c. Provide a condensate pump for each drain pan.
 d. Provide drain pan with a level float switch which will de-energize unit upon condensate reaching a preset level. (Emergency Drain Pan Substitute)
 8. Air Filtration Section:
 a. General Requirements for Air Filtration Section:
 1) Comply with NFPA 90A.
 2) Minimum Arrestance: According to ASHRAE 52.1 and MERV according to ASHRAE 52.2.
 3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.
 b. Disposable Panel Filters:
 1) MERV according to ASHRAE 52.2: 5.

2.3 OUTDOOR UNITS

A. Air-Cooled, Compressor-Condenser Components:
 1. Casing: Zinc coated Steel, finished with an electrostatically applied, thermally bonded, acrylic or polyester power coating for corrosion protection. Provide with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
 2. Casing shall be Hurricane resistant and able to withstand 155MPH wind speeds.
 3. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 a. Compressor Type: Scroll.
b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
c. Refrigerant Charge: R-410A.
d. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 210/240.

5. Fan: Aluminum-propeller type, directly connected to motor.
7. **Low Ambient Kit**: Permits operation down to 0 deg F.

2.4 ACCESSORIES

A. Control equipment and sequence of operation are specified in Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls."

B. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
1. Compressor time delay.
2. 24-hour time control of system stop and start.
3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
4. Fan-speed selection including auto setting.

C. Automatic-reset timer to prevent rapid cycling of compressor.

D. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.

E. Drain Hose: For condensate.

2.5 CAPACITIES AND CHARACTERISTICS

A. Cooling Capacity:
1. Refer to drawing schedules

B. Heating Capacity:
1. Refer to drawing schedules

C. Auxiliary Heating Capacity:
1. Refer to drawing schedules

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install units level and plumb.

B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.

C. Install ground-mounted, compressor-condenser components on 4-inch- (100-mm-) thick, reinforced concrete base that is 4 inches (100 mm) larger, on each side, than unit. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete." Coordinate anchor installation with concrete base.

D. Install ground-mounted, compressor-condenser components on polyethylene mounting base.

E. Install seismic restraints if required.

F. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.

3.3 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks according to manufacturer’s written instructions.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes cabinet unit heaters with centrifugal fans and electric-resistance heating coils.

1.3 DEFINITIONS
A. BAS: Building automation system.
B. CWP: Cold working pressure.
C. PTFE: Polytetrafluoroethylene plastic.
D. TFE: Tetrafluoroethylene plastic.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
B. Shop Drawings:
 1. Include plans, elevations, sections, and details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include location and size of each field connection.
 4. Include details of anchorages and attachments to structure and to supported equipment.
 5. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.
 6. Indicate location and arrangement of piping valves and specialties.
 7. Indicate location and arrangement of integral controls.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For cabinet unit heaters to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Reznor.
 2. Trane.
 3. Indeeco.

2.2 DESCRIPTION
A. Factory-assembled and -tested unit complying with AHRI 440.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. Comply with UL 2021.

2.3 PERFORMANCE REQUIREMENTS
A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
B. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."
2.4 COIL SECTION INSULATION

A. Insulation Materials: ASTM C 1071; surfaces exposed to airstream shall have aluminum-foil facing or other erosion-resistant coating to prevent erosion of glass fibers.
 1. Thickness: 1/2 inch (13 mm).
 2. Thermal Conductivity (k-Value): 0.26 Btu x in./h x sq. ft. at 75 deg F (0.037 W/m x K at 24 deg C) mean temperature.
 3. Fire-Hazard Classification: Maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM E 84.
 4. Adhesive: Comply with ASTM C 916 and with NFPA 90A or NFPA 90B.
 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

B. Insulation Materials: Comply with NFPA 90A or NFPA 90B. Unicellular polyethylene thermal plastic, preformed sheet insulation complying with ASTM C 534, Type II, except for density.
 1. Thickness: 1/2 inch (13 mm).
 2. Thermal Conductivity (k-Value): 0.24 Btu x in./h x sq. ft. at 75 deg F (0.034 W/m x K at 24 deg C) mean temperature.
 3. Fire-Hazard Classification: Maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM C 411.
 4. Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

2.5 CABINETS

A. Material: Steel with baked-enamel finish with manufacturer's standard paint, in color selected by Architect.
 1. Vertical Unit, Exposed Front Panels: Minimum 0.0528-inch- (1.35-mm-) or 0.0677-inch- (1.7-mm-) thick galvanized sheet steel, removable panels with channel-formed edges secured with tamperproof cam fasteners.
 2. Horizontal Unit, Exposed Bottom Panels: Minimum 0.0528-inch- (1.35-mm-) or 0.0677-inch- (1.7-mm-) thick galvanized sheet steel, removable panels secured with tamperproof cam fasteners and safety chain.
 3. Recessed Flanges: Steel, finished to match cabinet.
 4. Control Access Door: Key operated.
 5. Base: Minimum 0.0528-inch- (1.35-mm-) thick steel, finished to match cabinet, 4 inches (100 mm) 6 inches (150 mm) high with leveling bolts.
 6. False Back: Minimum 0.0428-inch- (1.1-mm-) thick steel, finished to match cabinet.

2.6 FILTERS

A. Minimum Arrestance: According to ASHRAE 52.1 and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 1. Washable Foam: 70 percent arrestance and MERV 3.
 2. Glass Fiber Treated with Adhesive: 80 percent arrestance and MERV 5.
 3. Pleated: 90 percent arrestance and MERV 7.

2.7 COILS

A. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and hum, mounted in ceramic inserts in galvanized-steel housing; with fuses in terminal box for overcurrent protection and limit controls for high-temperature protection. Terminate elements in stainless-steel machine-staked terminals secured with stainless-steel hardware.

2.8 CONTROLS

A. Fan and Motor Board: Removable.
 1. Fan: Forward curved, double width, centrifugal, directly connected to motor; thermoplastic or painted-steel wheels and aluminum, painted-steel, or galvanized-steel fan scrolls.
 3. Wiring Terminations: Connect motor to chassis wiring with plug connection.
B. Control devices and operational sequences are specified in Section 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence of Operations for HVAC Controls."

C. Basic Unit Controls:
 1. Control voltage transformer.
 2. Unit-mounted thermostat with the following features:
 b. Fan on-auto switch.
 d. Adjustable deadband.
 e. Set point.
 f. Indication.
 g. Deg F (Deg C) indication.
 3. Data entry and access port.
 a. Input data includes room temperature and occupied and unoccupied periods.
 b. Output data includes room temperature, supply-air temperature, entering-water temperature, operating mode, and status.

D. DDC Terminal Controller:
 1. Scheduled Operation: Occupied and unoccupied periods on seven-day clock with a minimum of four programmable periods per day.
 2. Unit Supply-Air Fan Operations:
 a. Occupied Periods: Fan runs continuously.
 b. Unoccupied Periods: Fan cycles to maintain setback room temperature.
 3. Heating-Coil Operations:
 a. Occupied Periods: Energize electric-resistance coil to provide heating if room temperature falls below thermostat set point.
 b. Unoccupied Periods: Start fan and energize electric-resistance coil if room temperature falls below setback temperature.
 4. Controller shall have volatile-memory backup.

E. BAS Interface Requirements:
 1. Interface relay for scheduled operation.
 2. Interface relay to provide indication of fault at central workstation.
 3. Interface shall be BAC-net compatible for central BAS workstation and include the following functions:
 a. Adjust set points.
 b. Cabinet unit-heater start, stop, and operating status.
 c. Data inquiry
 d. Occupied and unoccupied schedules.

F. Electrical Connection: Factory-wired motors and controls for a single field connection.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine areas to receive cabinet unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 B. Examine roughing-in for electrical connections to verify actual locations before unit-heater installation.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Install wall boxes in finished wall assembly; seal and weatherproof.
 B. Install cabinet unit heaters to comply with NFPA 90A.
 C. Suspend cabinet unit heaters from structure with elastomeric hangers.
 D. Install new filters in each fan-coil unit within two weeks of Substantial Completion.

3.3 CONNECTIONS
 A. Comply with safety requirements in UL 1995.
 B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
 C. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
3.4 FIELD QUALITY CONTROL
A. Perform the following tests and inspections:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
B. Units will be considered defective if they do not pass tests and inspections.
C. Prepare test and inspection reports.

3.5 ADJUSTING
A. Adjust initial temperature set points.

END OF SECTION
SECTION 26 0500
COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL
1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
1. Electrical equipment coordination and installation.
2. Sleeves for raceways and cables.
3. Sleeve seals.
5. Common electrical installation requirements.

1.03 DEFINITIONS
A. EPDM: Ethylene-propylene-diene terpolymer rubber.
B. NBR: Acrylonitrile-butadiene rubber.

1.04 SUBMITTALS
A. Product Data: For sleeve seals.

1.05 COORDINATION
A. Coordinate arrangement, mounting, and support of electrical equipment:
1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
3. To allow right of way for piping and conduit installed at required slope.
4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."
D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."
E. All work shall be tested and inspected. Coordinate testing dates and requirements with SCO inspectors and the architect and engineer. All tests and inspections shall be scheduled in advance. The State Electrical Inspector is the Authority Having Jurisdiction for electrical inspections. It is the responsibility of the electrical contractor to notify the Office of the State Electrical Inspector to schedule required inspections including rough-in, above ceiling and final inspections.
F. Division of Work: Refer to detail on the drawings for division of work and provide division of work per the North Carolina SCO Guidelines.
1. All individual motor starters and drives for mechanical equipment shall be furnished and installed under Mechanical Division.
2. Under Electrical Division, power wiring shall be provided up to a termination point consisting of a junction box, trough starter, VFD, or disconnect switch. Under Division 26, line side terminations shall be provided.
3. Wiring from the termination point to the mechanical equipment, including final connections, shall be provided under Mechanical Division.
4. Duct smoke detectors shall be furnished and wired by fire alarm contractor, installed by Mechanical contractor. Fire alarm AHU shut down circuits shall be wired from the fire alarm control panel to a terminations point, adjacent to the AHU control, under the fire alarm contractor. AHU control wiring from the termination point to the equipment shall be under Mechanical Contractor. Refer to all drawings for locations of duct type smoke detectors, and provide coordination with mechanical contractor. All code required duct type smoke detectors shall be provided. Provide remote alarm light, test and reset switch for each detector.
5. Equipment less than 110 volts, and associated with Mechanical equipment, shall be furnished, installed, and wired under Mechanical Division.
6. All wiring required for controls and instrumentation not indicated on the drawings shall be furnished and installed under Mechanical Division.
7. Provide smoke detectors for elevator recall function. Provide smoke and heat detector adjacent to each sprinkler head in elevator closet. Provide shunt trip function on elevator power overcurrent protective device connected to fire alarm system for power shut down prior to water discharge.
8. Roof mounted exhaust fans with built in disconnects provided under Mechanical Division, or door provided with built in outlet shall be wired under Division 26 to the line side of the disconnect switch or the outlet. A disconnect switch shall be provided Under Division 26 if the fan is not provided with a built in disconnect switch. In this case, wiring from the switch to the fan shall be under Mechanical Division.

9. The sequence of control for all equipment shall be as indicated on Mechanical Division drawings and specifications.

10. All sprinkler flow and tamper switches shall be furnished and installed under Mechanical Division, fire protection, and wired under fire alarm division.

11. Disconnects for the elevators and elevator cars shall be provided and installed Under Division 26.

G. Provide 1/4” and 1/8” scaled coordination drawings. Coordination drawings shall indicate all electrical devices, systems and equipment, including telecommunications, lighting, power, fire alarm, low voltage signaling and communications devices and systems, and shall be coordinated with other trades, including HVAC, Plumbing, Piping, Fire Protection, Audio Video, Structural, and other building elements.

PART 2 - PRODUCTS

2.01 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated “wall pipe,” equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Sleeves for Rectangular Openings: Galvanized sheet steel.

1. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side more than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches (1270 mm) and 1 or more sides equal to, or more than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.02 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.

3. Pressure Plates: Stainless steel. Include two for each sealing element.

4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.03 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.01 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

B. Comply with NFPA 70E.

C. Comply with the Energy Independence and Security Act, effective date January 1, 2009.

D. Comply with the latest edition of the National Electrical Code, all state code requirements, including the State Construction Office and State Electrical Inspector and State Fire Alarm Inspector.

E. Testing: Provide testing for the following systems:

1. All current carrying conductors shall be tested as installed, and before connections are made, for insulation resistance and accidental grounds. This shall be done with a 500 volt megger. The procedures listed below shall be followed:
 a. Minimum readings shall be one million or more ohms for #6 AWG wire and smaller, 250,000 ohms for #4 AWG wire or larger, between conductors and between conductor and the grounding conductor.
 b. After all fixtures, devices and equipment are installed and all connections completed to each panel, the contractor shall disconnect the neutral feeder conductor from the neutral bar and take a megger reading between the neutral bar and the grounded enclosure. If this reading is less than 250,000 ohms, the contractor shall disconnect the branch circuit neutral wires.
from this neutral bar. The contractor shall test each conductor separately to the panel and until the low readings are found. The contractor shall then correct troubles, reconnect and retest until at least 250,000 ohms from the neutral bar to the grounded panelboard is achieved with only the neutral feeder disconnected.

c. At final inspection, the contractor shall furnish a megger and show the engineer of record and the State Construction Office representatives that the panelboards comply with the above requirements. The contractor shall furnish a hook on type ammeter and voltmeter to take current and voltage readings as directed.

d. Ground system testing shall include testing by a ground resistance tester. Where systems show resistance to ground is over 25 ohms, appropriate action shall be taken to reduce the resistance to 25 ohms or less, by driving additional ground rods. Compliance shall be demonstrated by additional testing.

2. Circuit Breaker tests: Testing shall be performed on service circuit breakers and distribution breakers on site. Testing shall be performed by a qualified factory technician at the job site. All readings shall be tabulated and included in the owner’s manuals.

a. Phase tripping tolerance.
b. Trip time per phase in seconds.
c. Instantaneous trip amperes per phase.
d. Insulation resistance in megohms at 100 volts phase to phase and line to load.

3. Ground Fault Protection System tests:

a. The ground fault protection on circuit breakers shall be performance tested in the field and properly calibrated and set in accordance with the coordination study.

4. Documentation:

a. All tests specified shall be completely documented indication time of day, date, temperature and all pertinent test information.
b. All required documentation of readings indicated above shall be submitted to the engineer of record and the owner, prior to, and as one of the prerequisites for final acceptance of the project.

F. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

G. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

H. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

I. Right of Way: Give to piping systems installed at a required slope.

3.02 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.

G. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry

1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.

M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.
seals.

3.03 SLEEVE-SEAL INSTALLATION
 A. Install to seal exterior wall penetrations.
 B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.04 FIRESTOPPING
 A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION
SECTION 26 0519
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL
1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. This Section includes the following:
1. Building wires and cables rated 600 V and less.
2. Connectors, splices, and terminations rated 600 V and less.
3. Sleeves and sleeve seals for cables.
B. Related Sections include the following:
1. Division 27 Section "Communications Horizontal Cabling" for cabling used for voice and data circuits.

1.03 DEFINITIONS
A. EPDM: Ethylene-propylene-diene terpolymer rubber.
B. NBR: Acrylonitrile-butadiene rubber.

1.04 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Qualification Data: For testing agency.
C. Field quality-control test reports.

1.05 QUALITY ASSURANCE
A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
1. Testing Agency's Field Supervisor: Person currently certified by the International Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. Comply with NFPA 70.

1.06 COORDINATION
A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

PART 2 - PRODUCTS
2.01 CONDUCTORS AND CABLES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Alcan Products Corporation; Alcan Cable Division.
3. General Cable Corporation.
4. Senator Wire & Cable Company.
5. Southwire Company.
B. Copper Conductors: Comply with NEMA WC 70.
C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN.

2.02 CONNECTORS AND SPLICES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. AFC Cable Systems, Inc.
3. O-Z/Gedney; EGS Electrical Group LLC.
4. 3M; Electrical Products Division.
5. Tyco Electronics Corp.
B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.
1. Joints in solid conductors shall be spliced using Ideal or equivalent by 3M and T&B, wirenuts or connectors in junction boxes, outlet boxes, and lighting fixtures.
2. Sta-kon or other permanent type crimp connectors will not be permitted for branch circuit connections.
3. Joints in stranded conductors shall be splice by an approved mechanical connector and gum rubber tape or friction tape.
4. Solderless mechanical connectors for splices and taps, provided with UL approved insulating covers, may be used instead of mechanical connectors plus tape.
5. Conductors in all cases shall be continuous from outlet to outlet and no splicing shall be made except with outlet or junction boxes troughs and gutters.

PART 3 - EXECUTION

3.01 CONDUCTOR MATERIAL APPLICATIONS
A. Feeders: Copper. Solid for No. 10 AWG and smaller; Class B stranded for No. 8 AWG and larger. MC cable assemblies shall not be permitted.
B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger. MC cable assemblies shall not be permitted.

3.02 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
A. Service Entrance: Type THHN-THWN or XHHW, single conductors in raceway
B. Exposed Feeders: Type THHN-THWN or XHHW, single conductors in raceway
C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN-THWN or XHHW, or XHHW, single conductors in raceway.
D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN or XHHW, single conductors in raceway.
E. Exposed Branch Circuits, Including in Crawlspace: Type THHN-THWN or XHHW, single conductors in raceway.
F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN or XHHW, single conductors in raceway.
G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN or XHHW, single conductors in raceway.
H. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.
I. Class 1 Control Circuits: Type THHN-THWN, in raceway.
J. Voltage Drop:
 1. Conductors for branch circuits shall be sized for voltage drop not exceeding 3% at the farthest outlet of power, heating, and lighting loads, or any combination of such loads. The maximum total voltage drop on both feeders and branch circuits to the farthest outlet shall not exceed 5%.
 2. Where the conductor length from the panelboard to the first outlet on a 277 volt circuit exceeds 125 feet, the branch circuit conductor from the panelboard to the first outlet shall not be smaller than #10 AWG.
 3. Where the conductor length from the panelboard to the first outlet on a 120 volt circuit exceeds 50 feet, the branch circuit conductor from the panelboard to the first outlet shall not be smaller than #10 AWG.

3.03 INSTALLATION OF CONDUCTORS AND CABLES
A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.
B. Provide individual neutral for each circuit feeding electronic equipment.
C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
F. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."
G. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."

3.04 CONNECTIONS
A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches (300 mm) of slack.

3.05 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS
A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:
 1. For sleeve rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both wall surfaces.

G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.

H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 07 Section "Joint Sealants."

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 07 Section "Penetration Firestopping."

L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.

M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.

N. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between cable and sleeve for installing mechanical sleeve seals.

3.06 SLEEVE-SEAL INSTALLATION
A. Install to seal underground exterior-wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.07 FIRESTOPPING
A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."

3.08 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Perform tests and inspections and prepare test reports.

C. Tests and Inspections:
 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors, and conductors feeding the following critical equipment and services for compliance with requirements.
 a. Lighting controls
 b. Feeders and service entrance conductors
 c. Panelboards
 d. Photovoltaic panels and inverters
 e. Green monitoring system
 f. UPS system
3. **Infrared Scanning:** After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner.
 a. **Follow-up Infrared Scanning:** Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
 b. **Instrument:** Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 c. **Record of Infrared Scanning:** Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

D. **Test Reports:** Prepare a written report to record the following:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

E. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and
 Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
 A. Section Includes: Grounding systems and equipment.
 B. Section includes grounding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.

1.03 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in
 "Field Quality Control" Article, including the following:
 1. Test wells.
 2. Ground rods.
 3. Ground rings.
 4. Grounding arrangements and connections for separately derived systems.
 5. Grounding for sensitive electronic equipment.
 C. Qualification Data: For qualified testing agency and testing agency's field supervisor.
 D. Field quality-control reports.
 E. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance
 manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include
 the following:
 1. Instructions for periodic testing and inspection of grounding features at test wells and grounding
 connections for separately derived systems, based on NETA MTS or NFPA 70B.
 a. Tests shall determine if ground-resistance or impedance values remain within specified
 maximums, and instructions shall recommend corrective action if values do not.
 b. Include recommended testing intervals.

1.04 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
 B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a
 qualified testing agency, and marked for intended location and application.
 C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.01 CONDUCTORS
 A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise
 required by applicable Code or authorities having jurisdiction.
 B. Bare Copper Conductors:
 2. Tinned Conductors: ASTM B 33.
 3. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 4. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches
 (41 mm) wide and 1/16 inch (1.6 mm) thick.
 5. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules;
 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
 C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches (6.3 by 100 mm) in cross
 section, by length indicated on the drawings, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28
mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.

2.02 CONNECTORS
A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.
C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
D. Bus-bar Connectors: Mechanical type, cast silicon bronze, solderless compression or exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.03 GROUNDING ELECTRODES
A. Ground Rods: Copper-clad; 3/4 inch by 10 feet (19 mm by 3 m) in diameter.

PART 3 - EXECUTION
3.01 APPLICATIONS
A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
B. Underground Grounding Conductors: Install bare copper conductor, No. 2/0 AWG minimum.
 1. Bury at least 24 inches (600 mm) below grade.
 2. Duct-Bank Grounding Conductor: Bury 12 inches (300 mm) above duct bank when indicated as part of duct-bank installation.
C. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus on insulated spacers 2 inches (50 mm) minimum from wall, 6 inches (150 mm) above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down to specified height above floor; connect to horizontal bus.
D. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.02 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS
A. Comply with IEEE C2 grounding requirements.
B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches (100 mm) will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches (50 mm) above to 6 inches (150 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.
C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.
D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not
less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches (150 mm) from the foundation.

3.03 EQUIPMENT GROUNDING
A. Install insulated equipment grounding conductors with all feeders and branch circuits.
B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
D. Signal and Communication Equipment: In addition to grounding and bonding required by NFPA 70, provide a separate grounding system complying with requirements in TIA/ATIS J-STD-607-A.
1. For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
2. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-4-by-12-inch (6.3-by-100-by-300-mm) grounding bus.
3. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.
E. Metal Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.04 INSTALLATION
A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
B. Provide three means for main service grounding: to the metallic cold water pipe, per NEC, to the steel frame of the building if the building is effectively grounded, and to at least three ground rods. All grounding connections shall be accessible.
C. Ground Rods: Drive rods until tops are 2 inches (50 mm) below finished floor or final grade unless otherwise indicated.
1. Interconnect ground rods with ground rod conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Division 26 Section "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches (300 mm) deep, with cover.
1. Test Wells: Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.
E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.
F. Boxes with concentric, eccentric, or over-sized knockouts shall be provided with bonding bushings and jumpers. The jumper shall be sized per NEC Table 250-122 and lugger to the box. Refer to SCO Electrical Guidelines
G. Grounding and Bonding for Piping:
1. **Metal Water Service Pipe:** Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.

2. **Water Meter Piping:** Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.

3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

H. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

I. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet (18 m) apart.

J. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod and to each steel column extending around the perimeter of building.
 1. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.
 2. Bury ground ring not less than 24 inches (600 mm) from building's foundation.

K. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70; use a minimum of 20 feet (6 m) of bare copper conductor not smaller than No. 4 AWG.
 1. If concrete foundation is less than 20 feet (6 m) long, coil excess conductor within base of foundation.
 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building’s grounding grid or to grounding electrode external to concrete.

3.05 LABELING

A. Comply with requirements in Division 26 Section "Identification for Electrical Systems" Article for instruction signs. The label or its text shall be green.

B. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.
 1. **Label Text:** "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.06 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. **Manufacturer's Field Service:** Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.
4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

E. Grounding system will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

G. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).

H. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.
SECTION 26 0529
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL
1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. This Section includes the following:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.
B. Related Sections include the following:
 1. Division 26 Section "Vibration And Seismic Controls For Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.03 DEFINITIONS
A. EMT: Electrical metallic tubing.
B. IMC: Intermediate metal conduit.
C. RMC: Rigid metal conduit.

1.04 PERFORMANCE REQUIREMENTS
A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.05 SUBMITTALS
A. Product Data: For the following:
 1. Steel slotted support systems.
 2. Nonmetallic slotted support systems.
B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 1. Trapeze hangers. Include Product Data for components.
 2. Steel slotted channel systems. Include Product Data for components.
 3. Nonmetallic slotted channel systems. Include Product Data for components.
 4. Equipment supports.
C. Welding certificates.

1.06 QUALITY ASSURANCE
A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Comply with NFPA 70.

1.07 COORDINATION
A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."
PART 2 - PRODUCTS

2.01 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.
 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 5. Channel Dimensions: Selected for applicable load criteria.

B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported. Conduits installed on the interior of exterior building walls shall be spaced off the wall surface a minimum of ¼ inch using clamp backs or uni-strut.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 1. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) MKT Fastening, LLC.
 2. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
 3. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
 4. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 5. Toggle Bolts: All-steel springhead type.

2.02 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.
PART 3 - EXECUTION

3.01 APPLICATION
A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as scheduled in NECA 1, where its Table 1 lists maximum spacings less than stated in NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
C. Multiple Raceways: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits. 1. Secure raceways and cables to these supports with two-bolt conduit clamps or single-bolt conduit clamps using spring friction action for retention in support channel.
D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.02 SUPPORT INSTALLATION
A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 1. To Wood: Fasten with lag screws or through bolts.
 2. To New Concrete: Bolt to concrete inserts.
 3. To Masonry: Approved toggle-type bolts on hollow masonry units; metal expansion shields and machine screws or standard pre-set inserts, on solid masonry units.
 4. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.
 5. To Light Steel: Sheet metal screws or bolts.
 6. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.
D. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.03 INSTALLATION OF FABRICATED METAL SUPPORTS
A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.
B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
C. Field Welding: Comply with AWS D1.1/D1.1M.

3.04 CONCRETE BASES
A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
B. Use 3000-psi (20.7-MPa) 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Cast-in-Place Concrete."
C. Anchor equipment to concrete base. 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.05 PAINTING
A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
B. Touchup: Comply with requirements in Division 09 painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION
SECTION 26 0533
RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL
1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
B. Related Sections include the following:
 1. Division 26 Section “Underground Ducts and Raceways for Electrical Systems” for exterior ductbanks, manholes, and underground utility construction.

1.03 DEFINITIONS
A. EMT: Electrical metallic tubing.
B. EPDM: Ethylene-propylene-diene terpolymer rubber.
C. FMC: Flexible metal conduit.
D. IMC: Intermediate metal conduit.
E. RGS: Rigid Steel conduit.
F. LFMC: Liquidtight flexible metal conduit.
G. NBR: Acrylonitrile-butadiene rubber.
H. RNC: Rigid nonmetallic conduit.

1.04 SUBMITTALS
A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 1. Custom enclosures and cabinets.
 2. For handholes and boxes for underground wiring, including the following:
 a. Duct entry provisions, including locations and duct sizes.
 b. Frame and cover design.
 c. Grounding details.
 d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
 e. Joint details.
C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 1. Structural members in the paths of conduit groups with common supports.
 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.
D. Manufacturer Seismic Qualification Certification: Submit certification that enclosures and cabinets and their mounting provisions, including those for internal components, will withstand seismic forces defined in Division 26 Section “Vibration and Seismic Controls for Electrical Systems.” Include the following:
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
E. Qualification Data: For professional engineer and testing agency.
F. Source quality-control test reports.

1.05 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. Comply with NFPA 70.

PART 2 - PRODUCTS
2.01 METAL CONDUIT AND TUBING
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Allied Tube & Conduit; a Tyco International Ltd. Co.
 2. Anamet Electrical, Inc.; Anaconda Metal Hose.
 5. Wheatland Tube Company.
2.02 NONMETALLIC CONDUIT AND TUBING
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Anamet Electrical, Inc.; Anaconda Metal Hose.
2. Arnco Corporation.
3. CANTEX Inc.
6. ElecSYS, Inc.
7. Lamson & Sessions; Carlon Electrical Products.
8. RACO; a Hubbell Company.
B. RNC: NEMA TC 2, Type EPC-40-PVC, unless otherwise indicated.
C. Fittings for RNC: NEMA TC 3; match to conduit or tubing type and material.

2.03 OPTICAL FIBER/COMMUNICATIONS CABLE RACEWAY AND FITTINGS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Arnco Corporation.
2. Endot Industries Inc.
3. IPEX Inc.
4. Lamson & Sessions; Carlon Electrical Products.
B. Description: Comply with UL 2024; flexible type, approved for plenum and riser installation.

2.04 METAL WIREWAYS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Cooper B-Line, Inc.
2. Hoffman.
3. Square D; Schneider Electric.
B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1 or 3R as indicated.
C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
D. Wireway Covers: Hinged type.
E. Finish: Manufacturer's standard enamel finish.

2.05 SURFACE RACEWAYS
A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color selected by Architect.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Thomas & Betts Corporation.
c. Wiremold Company (The); Electrical Sales Division.

2.06 BOXES, ENCLOSURES, AND CABINETS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
2. EGS/Appleton Electric.
7. RACO; a Hubbell Company.
10. Spring City Electrical Manufacturing Company.

B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.
C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
D. Metal Floor Boxes: Cast metal, fully adjustable, rectangular.
E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
F. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, cast aluminum, with gasketed cover.
G. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
H. Cabinets:
 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.

2.07 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING
A. Description: Comply with SCTE 77.
 2. Configuration: Units shall be designed for flush burial and have open bottom, unless otherwise indicated.
 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 5. Cover Legend: Molded lettering, "ELECTRIC," "TELEPHONE."
 6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
 7. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.
B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel or fiberglass or a combination of the two.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Armorcast Products Company.
 b. Carson Industries LLC.
 c. CDR Systems Corporation.
 d. NewBasis.

2.08 SLEEVES FOR RACEWAYS
A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

2.09 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES
A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 1. Tests of materials shall be performed by an independent testing agency.
 2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.
PART 3 - EXECUTION

3.01 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:
 1. Exposed conduit: RGS or IMC.
 2. Concealed conduit, aboveground: Rigid steel conduit or IMC.
 3. Underground conduit: RNC, Type EPC-40 PVC, direct buried.
 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC where not subject to physical damage.
 6. Application of handholes and boxes for underground wiring:
 a. Handholes and pull boxes in driveway, parking lot, and off-roadway locations, subject to occasional, nondeliberate loading by heavy vehicles: Polymer concrete, SCTE 77, tier 15 structural load rating.
 b. Handholes and pull boxes in sidewalk and similar applications with a safety factor for nondeliberate loading by vehicles: Polymer-concrete units SCTE 77, tier 8 structural load rating.

B. Comply with the following indoor applications, unless otherwise indicated:
 1. Exposed, not subject to physical damage: EMT.
 2. Exposed, not subject to severe physical damage: EMT.
 3. Exposed and subject to severe physical damage: Rigid steel conduit or IMC. Includes raceways in the following locations:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 4. Concealed in ceilings and interior walls and partitions: EMT.
 5. Connection to vibrating equipment (including transformers and hydraulic, pneumatic, electric solenoid, or motor-driven equipment): FMC, except use LFMC in damp or wet locations where not subject to physical damage.
 6. Damp or wet locations: RGC or IMC.
 7. Boxes and enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless steel in damp or wet locations.

C. Minimum raceway size: 3/4-inch (21-mm) trade size.

D. Raceway fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and intermediate steel conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
 2. PVC externally coated, rigid steel conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.
 3. EMT terminations and couplings shall be made utilizing steel-plated hexagonal compression connectors. No pot metal, setscrew, or indented type fittings shall be utilized.

E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

F. Do not install aluminum conduits in contact with concrete.

3.02 INSTALLATION

A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.

B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."

E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.

G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.

H. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow combat producer's written instructions.

I. Raceway terminations at locations subject to moisture or vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.

J. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.

K. No raceways may be installed in slabs.

L. Raceways for optical fiber and communications cable: Install raceways, metallic and nonmetallic, rigid and flexible, as follows:
1. 3/4-Inch (19-mm) Trade Size and Smaller: Install raceways in maximum lengths of 50 feet (15 m).
2. 1-Inch (25-mm) Trade Size and Larger: Install raceways in maximum lengths of 75 feet (23 m).
3. Install with a maximum of two 90-degree bends or equivalent for each length of raceway unless drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

M. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where otherwise required by NFPA 70.

N. Flexible Conduit Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semi-recessed lighting fixtures, equipment subject to vibration, noise transmission, or movement, and for transformers and motors.
1. Use LFMC in damp or wet locations where not subject to severe physical damage.

O. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.

P. Set metal floor boxes level and flush with finished floor surface.

3.03 INSTALLATION OF UNDERGROUND CONDUIT
A. Direct-Buried Conduit:
1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Division 31 Section "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter.
2. Install backfill as specified in Division 31 Section "Earth Moving."
3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 31 Section "Earth Moving."
4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Encase elbows for stub-up ducts throughout the length of the elbow.
5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 b. For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.
6. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above direct-buried conduits, placing them 24 inches (600 mm) o.c. Align planks along the width and along the centerline of conduit.

3.04 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES
A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade.
D. Install handholes and boxes with bottom below the frost line.
E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in the enclosure.
F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.05 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS
A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."
B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:
 1. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side greater than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 2. For sleeve cross-section rectangle perimeter equal to, or greater than, 50 inches (1270 mm) and 1 or more sides equal to, or greater than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both surfaces of walls.

G. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.

H. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway unless sleeve seal is to be installed or unless seismic criteria require different clearance.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway penetrations. Install sleeves and seal with firestop materials. Comply with Division 07 Section "Penetration Firestopping."

L. Roof-Penetration Sleeves: Seal penetration of individual raceways with flexible, boot-type flashing units applied in coordination with roofing work.

M. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.

N. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway and sleeve for installing mechanical sleeve seals.

3.06 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
1. Conduit, ducts, and duct accessories for direct-buried and concrete-encased duct banks, and in single duct runs.
2. Handholes and pull boxes.

1.03 DEFINITION
A. RNC: Rigid nonmetallic conduit.

1.04 SUBMITTALS
A. Product Data: For the following:
1. Duct-bank materials, including separators and miscellaneous components.
2. Ducts and conduits and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
3. Accessories for manholes, handholes, pull boxes.
4. Warning tape.
5. Warning Planks.
B. Shop Drawings for Factory-Fabricated Handholes and Pull Boxes Other Than Precast Concrete: Include dimensioned plans, sections, and elevations, and fabrication and installation details, including the following:
1. Duct entry provisions, including locations and duct sizes.
2. Cover design.
4. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
C. Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures.
1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.
2. Drawings shall be signed and sealed by a qualified professional engineer.
D. Product Certificates: For concrete and steel used in precast concrete manholes, pull boxes and handholes, comply with ASTM C 858.
E. Qualification Data: For qualified professional engineer and testing agency.
F. Source quality-control reports.
G. Field quality-control reports.

1.05 QUALITY ASSURANCE
A. Comply with IEEE C2.
B. Comply with NFPA 70.

1.06 DELIVERY, STORAGE, AND HANDLING
A. Deliver ducts to Project site with ends capped. Store nonmetallic ducts with supports to prevent bending, warping, and deforming.
B. Store precast concrete and other factory-fabricated underground utility structures at Project site as recommended by manufacturer to prevent physical damage. Arrange so identification markings are visible.
C. Lift and support precast concrete units only at designated lifting or supporting points.

1.07 PROJECT CONDITIONS
A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
1. Notify Architect no fewer than five days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without Architect's written permission.

1.08 COORDINATION
A. Coordinate layout and installation of ducts, manholes, handholes, and pull boxes with final arrangement of other utilities, site grading, and surface features as determined in the field.
B. Coordinate elevations of ducts and duct-bank entrances into manholes, handholes, and pull boxes with final locations and profiles of ducts and duct banks as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations from those indicated as required to suit field conditions and to ensure that duct runs drain to manholes and handholes, and as approved by Architect.

1.09 EXTRA MATERIALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

PART 2 - PRODUCTS
2.01 CONDUIT
B. RNC: NEMA TC 2, Type EPC-40-PVC, UL 651, with matching fittings by same manufacturer as the conduit, complying with NEMA TC 3 and UL 514B.

2.02 NONMETALLIC DUCTS AND DUCT ACCESSORIES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AFC Cable Systems.
 2. ARNCO Corporation.
 4. Cantex, Inc.
 5. CertainTeed Corp.
 7. DCX-CHOL Enterprises, Inc.; ELECSYS Division.
 8. Electri-Flex Company.
 9. IPEX Inc.
 10. Lamson & Sessions; Carlon Electrical Products.
 11. Manhattan Wire Products; a Belden company.
B. Underground Plastic Utilities Duct: NEMA TC 6 & 8, Type DB-60-PVC, ASTM F 512, with matching fittings by the same manufacturer as the duct, complying with NEMA TC 9.
C. Duct Accessories:
 1. Duct Separators: Factory-fabricated rigid PVC interlocking spacers, sized for type and sizes of ducts with which used, and retained to provide minimum duct spacings indicated while supporting ducts during concreting or backfilling.
 2. Warning Tape: Underground-line warning tape specified in Division 26 Section "Identification for Electrical Systems."

2.03 HANDHOLES AND PULL BOXES OTHER THAN PRECAST CONCRETE
A. Description: Comply with SCTE 77.
 2. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.
 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 5. Cover Legend: Molded lettering,
 a. "ELECTRIC" or "TELEPHONE" As indicated for each service.
 b. Tier level number, indicating that the unit complies with the structural load test for that tier according to SCTE 77.
 6. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, retained to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
8. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

B. Polymer Concrete Handholes and Pull Boxes with Polymer Concrete Cover: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two. Handholes and pull boxes shall comply with the requirements of SCTE 7 Tier loading according to application.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Armorcast Products Company.
 b. Carson Industries LLC.
 c. CDR Systems Corporation.
 d. NewBasis.

2.04 SOURCE QUALITY CONTROL
A. Nonconcrete Handhole and Pull Box Prototype Test: Test prototypes of manholes and pull boxes for compliance with SCTE 77. Strength tests shall be for specified Tier ratings of products supplied.
1. Testing Agency: Engage a qualified testing agency to evaluate nonconcrete handholes and pull boxes.
2. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION
3.01 CORROSION PROTECTION
A. Aluminum shall not be installed in contact with earth or concrete.

3.02 UNDERGROUND DUCT APPLICATION
A. Ducts for Electrical Feeders 600 V and Less: RNC, NEMA Type EPC-40-PVC, in concrete-encased duct bank unless otherwise indicated.
B. Ducts for Electrical Branch Circuits: RNC, NEMA Type EPC-40-PVC, in direct-buried duct bank unless otherwise indicated.
C. Underground Ducts for Telephone, Communications, or Data Utility Service Cables: RNC, NEMA Type EPC-40-PVC, in concrete-encased duct bank unless otherwise indicated.
D. Underground Ducts for Telephone, Communications, or Data Circuits: RNC, NEMA Type EPC-40-PVC, in concrete-encased duct bank unless otherwise indicated.

3.03 UNDERGROUND ENCLOSURE APPLICATION
A. Handholes and Pull Boxes for 600 V and Less, Including Telephone, Communications, and Data Wiring:
 1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-10 structural load rating.
 2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Polymer concrete, SCTE 77, Tier 15 or Tier 22 structural load rating.
 3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Polymer concrete units, SCTE 77, Tier 8 structural load rating.
 4. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf (13 345-N) "Light-Duty" vertical loading.

3.04 EARTHWORK
A. Excavation and Backfill: Comply with Division 31 Section "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.
B. Restore surface features at areas disturbed by excavation and reestablish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
C. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Division 32 Sections "Turf and Grasses" and "Plants."
D. Cut and patch existing pavement in the path of underground ducts and utility structures according to Division 01 Section "Cutting and Patching."

3.05 DUCT INSTALLATION
A. Slope: Pitch ducts a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope ducts from a high point in runs between two manholes to drain in both directions.
B. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches (1220 mm), both horizontally and vertically, at other locations unless otherwise indicated.
C. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.
D. Duct Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches (250 mm) o.c. for 5-inch (125-mm) ducts, and vary proportionately for other duct sizes.
 1. Begin change from regular spacing to end-bell spacing 10 ft. (3 m) from the end bell without reducing duct line slope and without forming a trap in the line.
 2. Direct-Buried Duct Banks: Install an expansion and deflection fitting in each conduit in the area of disturbed earth adjacent to manhole or handhole.
E. Building Wall Penetrations: Make a transition from underground duct to rigid steel conduit at least 10 ft. (3 m) outside the building wall without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for duct-to-conduit transition. Install conduit penetrations of building walls as specified in Division 26 Section "Common Work Results for Electrical."
F. Sealing: Provide temporary closure at terminations of ducts that have cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.
G. Pulling Cord: Install 100-lbf- (445-N-) test nylon cord in ducts, including spares.
H. Concrete-Encased Ducts: Support ducts on duct separators.
 1. Separator Installation: Space separators close enough to prevent sagging and deforming of ducts, with not less than 4 spacers per 20 ft. (6 m) of duct. Secure separators to earth and to ducts to prevent floating during concreting. Stagger separators approximately 6 inches (150 mm) between tiers. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 2. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
 a. Start at one end and finish at the other, allowing for expansion and contraction of ducts as their temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written recommendations, or use other specific measures to prevent expansion-contraction damage.
 b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch (19-mm) reinforcing rod dowels extending 18 inches (450 mm) into concrete on both sides of joint near corners of envelope.
 3. Pouring Concrete: Spade concrete carefully during pours to prevent voids under and between conduits and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Use a plank to direct concrete down sides of bank assembly to trench bottom. Allow concrete to flow to center of bank and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-bank application.
 4. Reinforcement: Reinforce concrete-encased duct banks where they cross disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
 5. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.
 6. Minimum Space between Ducts: 3 inches (75 mm) between ducts and exterior envelope wall, 2 inches (50 mm) between ducts for like services, and 4 inches (100 mm) between power and signal ducts.
 7. Depth: Install top of duct bank at least 24 inches (600 mm) below finished grade in areas not subject to deliberate traffic, and at least 30 inches (750 mm) below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.
8. **Stub-Ups:** Use manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 b. **Stub-Ups to Equipment:** For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of base. Install insulated grounding bushings on terminations at equipment.

9. **Warning Tape:** Bury warning tape approximately 12 inches (300 mm) above all concrete-encased ducts and duct banks. Align tape parallel to and within 3 inches (75 mm) of the centerline of duct bank. Provide an additional warning tape for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional tapes 12 inches (300 mm) apart, horizontally.

I. **Direct-Buried Duct Banks:**
 1. Support ducts on duct separators coordinated with duct size, duct spacing, and outdoor temperature.
 2. Space separators close enough to prevent sagging and deforming of ducts, with not less than 4 spacers per 20 ft. (6 m) of duct. Secure separators to earth and to ducts to prevent displacement during backfill and yet permit linear duct movement due to expansion and contraction as temperature changes. Stagger spacers approximately 6 inches (150 mm) between tiers.
 3. Excavate trench bottom to provide firm and uniform support for duct bank. Prepare trench bottoms as specified in Division 31 Section "Earth Moving" for pipes less than 6 inches (150 mm) in nominal diameter.
 4. Install backfill as specified in Division 31 Section "Earth Moving."
 5. After installing first tier of ducts, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand-place backfill to 4 inches (100 mm) over ducts and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction as specified in Division 31 Section "Earth Moving."
 6. Install ducts with a minimum of 3 inches (75 mm) between ducts for like services and 6 inches (150 mm) between power and signal ducts.
 7. **Depth:** Install top of duct bank at least 36 inches (900 mm) below finished grade unless otherwise indicated.
 8. **Set elevation of bottom of duct bank below the frost line.**
 9. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 b. For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.

10. **Warning Planks:** Bury warning planks approximately 12 inches (300 mm) above direct-buried ducts and duct banks, placing them 24 inches (600 mm) o.c. Align planks along the width and along the centerline of duct bank. Provide an additional plank for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional planks 12 inches (300 mm) apart, horizontally.

3.06 INSTALLATION OF HANDHOLES AND PULL BOXES OTHER THAN PRECAST CONCRETE

A. Install handholes and pull boxes level and plumb and with orientation and depth coordinated with connecting ducts to minimize bends and deflections required for proper entrances. Use pull box extension if required to match depths of ducts, and seal joint between box and extension as recommended by the manufacturer.

B. **Unless otherwise indicated,** support units on a level 6-inch- (15-cm-) thick bed of crushed stone or gravel, graded from 1/2-inch (12.7-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

C. **Elevation:** Set so cover surface will be flush with finished grade.

D. Install handholes and pull boxes with bottom below the frost line, below grade.

E. **Install removable hardware,** including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Retain arm lengths to be...
long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in the enclosure.

F. Field-cut openings for ducts and conduits according to enclosure manufacturer’s written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

G. For enclosures installed in asphalt paving and subject to occasional, nondeliberate, heavy-vehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.
 1. Concrete: 3000 psi (20 kPa), 28-day strength, complying with Division 03 Section "Cast-in-Place Concrete," with a troweled finish.
 2. Dimensions: 10 inches wide by 12 inches deep (250 mm wide by 300 mm deep).

3.07 GROUNDING
A. Ground underground ducts according to Division 26 Section "Grounding and Bonding for Electrical Systems."

3.08 FIELD QUALITY CONTROL
A. Perform the following tests and inspections:
 1. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.
 2. Pull aluminum or wood test mandrel through duct to prove joint integrity and test for out-of-round duct. Provide mandrel equal to 80 percent fill of duct. If obstructions are indicated, remove obstructions and retest.

B. Correct deficiencies and retest as specified above to demonstrate compliance.

C. Prepare test and inspection reports.

3.09 CLEANING
A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of ducts. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

END OF SECTION
SECTION 26 0553
IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL
1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Identification for raceways.
 2. Identification of power and control cables.
 3. Identification for conductors.
 5. Warning labels and signs.
 6. Instruction signs.
 7. Equipment identification labels.
 8. Miscellaneous identification products.

1.03 SUBMITTALS
A. Product Data: For each electrical identification product indicated.
B. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.
C. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.04 QUALITY ASSURANCE
B. Comply with NFPA 70.
D. Comply with ANSI Z535.4 for safety signs and labels.
E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.05 COORDINATION
A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
C. Coordinate installation of identifying devices with location of access panels and doors.
D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS
2.01 POWER RACEWAY IDENTIFICATION MATERIALS
A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.
B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.
C. Colors for Raceways Carrying Circuits at More Than 600 V:
 1. Black letters on an orange field.
 2. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch- (75-mm-) high letters on 20-inch (500-mm) centers.
D. Self-Adhesive Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.
E. Snap-Around Labels for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
F. Snap-Around, Color-Coding Bands for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

G. Tape and Stencil for Raceways Carrying Circuits More Than 600 V: 4-inch- (100-mm-) wide black stripes on 10-inch (250-mm) centers diagonally over orange background that extends full length of raceway or duct and is 12 inches (300 mm) wide. Stop stripes at legends.

H. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking cable tie fastener.

2.02 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking cable tie fastener.

D. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

2.03 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

D. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.04 FLOOR MARKING TAPE

A. 2-inch- (50-mm-) wide, 5-mil (0.125-mm) pressure-sensitive vinyl tape, with black and white stripes and clear vinyl overlay.

2.05 UNDERGROUND-LINE WARNING TAPE

A. Tape:
 1. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 2. Printing on tape shall be permanent and shall not be damaged by burial operations.
 3. Tape material and ink shall be chemically inert, and not subject to degrading when exposed to acids, alkalis, and other destructive substances commonly found in soils.

B. Color and Printing:
 1. Comply with ANSI Z535.1 through ANSI Z535.5.
 2. Inscriptions for Red-Colored Tapes: ELECTRIC LINE, HIGH VOLTAGE, <Insert inscription>.
 3. Inscriptions for Orange-Colored Tapes: TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE.
 4. Pigmented polyolefin, bright-colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
 5. Thickness: 4 mils (0.1 mm).
 6. Weight: 18.5 lb/1000 sq. ft. (9.0 kg/100 sq. m).
 7. 3-Inch (75-mm) Tensile According to ASTM D 882: 300 lbf (133.4 N), and 12,500 psi (17.2 MPa).

2.06 WARNING LABELS AND SIGNS

B. Laminated, engraved, phenolic minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. inches (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes.

C. Warning Signs:
 1. Preprinted signs, punched or drilled for self tapping stainless steel screws with protected screw ends or rivets.
2. ½ inch high letters, with colors, legend, and size required for application.

D. Warning label and sign shall include, but are not limited to, the following legends:
1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.07 INSTRUCTION SIGNS
A. Engraved, laminated phenolic, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. inches (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes.
1. Engraved legend with black letters on white face.
2. Punched or drilled for self tapping stainless steel screws with protected screw ends or rivets.
3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.08 EQUIPMENT IDENTIFICATION LABELS
A. Engraved, Phenolic Label: Punched or drilled for self tapping stainless steel screws, with protected screw end, or with rivets. Minimum letter height shall be 1/2 inch. The following nameplate identification schedule shall be used:
1. Blue surface with white core for 120/208 volt equipment
2. Black surface with white core for 277/480 volt equipment
3. Bright red surface with white core for all equipment related to the fire alarm system
4. Dark red (burgundy) surface with white core for all equipment related to security
5. Green surface with white core for all equipment related to "emergency" systems
6. Orange surface with white core for all equipment related to telephone systems
7. Brown surface with white core for all equipment related to data systems
8. White surface with white core for all equipment related to paging systems
9. Purple surface with white core for all equipment related to TV systems

2.09 CABLE TIES
A. General-Purpose Cable Ties: Fungus inert, self extinguishing, one piece, self locking, Type 6/6 nylon.
1. Minimum Width: 3/16 inch (5 mm).
2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 12,000 psi (82.7 MPa).
3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self extinguishing, one piece, self locking, Type 6/6 nylon.
1. Minimum Width: 3/16 inch (5 mm).
2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 12,000 psi (82.7 MPa).
3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
C. Plenum-Rated Cable Ties: Self extinguishing, UV stabilized, one piece, self locking.
1. Minimum Width: 3/16 inch (5 mm).
2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 7000 psi (48.2 MPa).
3. UL 94 Flame Rating: 94V-0.
4. Temperature Range: Minus 50 to plus 284 deg F (Minus 46 to plus 140 deg C).
5. Color: Black.

2.010 MISCELLANEOUS IDENTIFICATION PRODUCTS
A. Paint: Comply with requirements in Division 09 painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).
B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION
3.01 INSTALLATION
A. Verify identity of each item before installing identification products.
B. All empty conduit runs and conduit with conductors for future use shall be identified for use and shall indicate where they terminate. Identification shall be by tags with string or wire attached to conduit or outlet.
C. All outlet boxes, junction boxes, and pull boxes shall have their covers and exterior visible surfaces painted with colors to match the surface color scheme outlined above. This includes covers on boxes above lift out and other types of accessible ceilings.
D. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
E. Apply identification devices to surfaces that require finish after completing finish work.
F. Clean surfaces before application of labels, using materials and methods recommended by manufacturer of identification device.
G. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
H. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.
I. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.
J. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches (400 mm) overall.
K. Painted Identification: Comply with requirements in Division 09 painting Sections for surface preparation and paint application.

3.02 IDENTIFICATION SCHEDULE
A. Concealed Raceways, Duct Banks, More Than 600 V, within Buildings: Tape and stencil 4-inch- (100-mm-) wide black stripes on 10-inch (250-mm) centers over orange background that extends full length of raceway or duct and is 12 inches (300 mm) wide. Stencil legend "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch- (75-mm-) high black letters on 20-inch (500-mm) centers. Stop stripes at legends. Apply to the following finished surfaces:
 1. Floor surface directly above conduits running beneath and within 12 inches (300 mm) of a floor that is in contact with earth or is framed above unexcavated space.
 2. Wall surfaces directly external to raceways concealed within wall.
 3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.
B. Accessible Raceways, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A, and 120 V to ground: Identify with self-adhesive vinyl label or self-adhesive vinyl tape applied in bands. Install labels at 10-foot (3-m) maximum intervals.
C. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:
 2. DC Voltage.
 3. Power.
 4. UPS.
D. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
 1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder and branch-circuit conductors.
 a. Color shall be factory applied.
 b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
 e. Equipment grounding conductor shall be identified along its entire length by green with yellow stripe or solid green conductor.
 f. Grounded conductor (neutral) shall be identified along its entire length by white solid color outer finish or by three white stripes along the entire length. The insulation color used with three white stripes shall not be green.
E. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.

F. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source.

 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

H. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.
 2. Install underground-line warning tape for both direct-buried cables and cables in raceway.

I. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

J. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting:
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Inverters.
 c. Combiner switches.
 d. Controls with external control power connections.

K. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

L. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 1. Labeling Instructions:
 a. Indoor Equipment: Unless otherwise indicated, provide a single line of text with 1/2-inch-(13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.
 b. Outdoor Equipment: Labels 4 inches (100 mm) high.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Fasten labels with appropriate stainless steel fasteners that do not change the NEMA or NRTL rating of the enclosure.
 2. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard label shall be engraved phenolic.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchboards.
 e. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 f. Emergency system boxes and enclosures.
 g. Enclosed switches.
 h. Enclosed circuit breakers.
 i. Enclosed controllers.
 j. Variable-speed controllers.
 k. Push-button stations.
 l. Power transfer equipment.
 m. Contactors.
 n. Remote-controlled switches, dimmer modules, and control devices.
 o. Inverter units.
 p. Power-generating units.
q. Monitoring and control equipment.
r. UPS equipment.

END OF SECTION
SECTION 26 2416
PANEL BOARDS

PART 1 - GENERAL
1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
1. Distribution panelboards.
2. Lighting and appliance branch-circuit panelboards.

1.03 DEFINITIONS
A. SVR: Suppressed voltage rating.
B. TVSS: Transient voltage surge suppressor.

1.04 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified.

1.05 SUBMITTALS
A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
B. Shop Drawings: For each panelboard and related equipment.
1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
2. Detail enclosure types and details for types other than NEMA 250, Type 1.
3. Detail bus configuration, current, and voltage ratings.
4. Short-circuit current rating of panelboards and overcurrent protective devices.
5. Include evidence of NRTL listing for series rating of installed devices.
6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
7. Include wiring diagrams for power, signal, and control wiring.
8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.
C. Qualification Data: For qualified testing agency.
D. Seismic Qualification Certificates: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
E. Field Quality-Control Reports:
1. Test procedures used.
2. Test results that comply with requirements.
3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
F. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.
G. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.
1.06 QUALITY ASSURANCE
A. Testing Agency Qualifications: Member company of NETA or an NRTL.
B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
E. Comply with NEMA PB 1.
F. Comply with NFPA 70.

1.07 DELIVERY, STORAGE, AND HANDLING
A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.08 PROJECT CONDITIONS
A. Environmental Limitations:
 1. Do not deliver or install panelboards until spaces are enclosed and weather tight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding minus 22 deg F (minus 30 deg C) to plus 104 deg F (plus 40 deg C).
B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet (2000 m).

1.09 COORDINATION
A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.10 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: five years from date of Final Acceptance or Beneficial Occupancy.

1.11 EXTRA MATERIALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Keys: two spares for each type of panelboard cabinet lock.

PART 2 - PRODUCTS
2.01 GENERAL REQUIREMENTS FOR PANELBOARDS
A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
B. Enclosures: surface-mounted cabinets.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, type 1.
 b. Outdoor Locations: NEMA 250, type 4X.
 c. Other Wet or Damp Indoor Locations: NEMA 250, type 4.
 d. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
2. Hinged Front Cover: Entire front trim hinged to box and with standard hinged door within hinged trim cover.
3. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
4. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
5. Finishes:
 a. Panels and Trim: steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.

C. Incoming Mains Location: Top and bottom.
D. Phase, Neutral, and Ground Buses:
 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 3. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads.
E. Conductor Connectors: Suitable for use with conductor material and sizes.
 2. Main and Neutral Lugs: Mechanical type.
 3. Ground Lugs and Bus-Configured Terminators: Mechanical type.
 4. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.
F. Service Equipment Label: NRTL labeled for use as service equipment for panelboards or load centers with one or more main service disconnecting and overcurrent protective devices.
G. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

2.02 DISTRIBUTION PANELBOARDS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.
B. Panelboards: NEMA PB 1, power and feeder distribution type.
C. Doors: Door in door construction, secured with vault-type latch with tumbler lock; keyed alike.
 1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.
D. Mains: Circuit breaker.
F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

2.03 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.
B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
C. Mains: Circuit breaker or as indicated on the drawings.
D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
E. Doors: Door in door construction secured with flush latch with tumbler lock; keyed alike.

2.04 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 2. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I^2t response.
 3. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
 5. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Shunt Trip: 120 trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 f. Multipole units enclosed in a single housing or factory assembled to operate as a single unit.
 g. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
 h. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.
 C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
 1. Fuses, and Spare-Fuse Cabinet: Comply with requirements specified in Division 26 Section "Fuses."
 2. Fused Switch Features and Accessories: Standard ampere ratings and number of poles.
 3. Auxiliary Contacts: Two normally open and normally closed contact(s) that operate with switch handle operation.

2.05 ACCESSORY COMPONENTS AND FEATURES
 A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
 B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.01 EXAMINATION
 A. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.
 B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.
 C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION
 A. Install panelboards and accessories according to NEMA PB 1.1.
 B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
 C. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
 D. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
 E. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
 F. Install overcurrent protective devices and controllers not already factory installed.
1. Set field-adjustable, circuit-breaker trip ranges.

G. Install filler plates in unused spaces.

H. Stub four 1-inch (27-GRC) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (27-GRC) empty conduits into raised floor space or below slab not on grade.

I. Comply with NEC 1.

3.03 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.04 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:

1. Test insulation resistance for each panel board bus, component, connecting supply, feeder, and control circuit.

2. Test continuity of each circuit.

E. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.

2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3. Perform the following infrared scan tests and inspections and prepare reports:

 a. Initial Infrared Scanning: After Final Acceptance or Beneficial Occupancy, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.

 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Final Acceptance or Beneficial Occupancy.

 c. Instruments and Equipment:

 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

F. Panelboards will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.05 ADJUSTING

A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Division 26 Section "Overcurrent Protective Device Coordination Study."

C. Load Balancing: After Final Acceptance or Beneficial Occupancy, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.

1. Measure as directed during period of normal system loading.

2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.

3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

3.06 PROTECTION
A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. This Section includes the following:
1. Receptacles, receptacles with integral GFCI, and associated device plates.
2. Twist-locking receptacles.
3. Receptacles with integral surge suppression units.
5. Snap switches and wall-box dimmers.
7. Wall-switch and exterior occupancy sensors.
8. Communications outlets.
10. Cord and plug sets.
11. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies.

1.03 DEFINITIONS
A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
D. RFI: Radio-frequency interference.
E. TVSS: Transient voltage surge suppressor.
F. UTP: Unshielded twisted pair.

1.04 SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
C. Samples: One for each type of device and wall plate specified, in each color specified.
D. Field quality-control test reports.
E. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing label warnings and instruction manuals that include labeling conditions.

1.05 QUALITY ASSURANCE
A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. Comply with NFPA 70.

1.06 COORDINATION
A. Receptacles for Owner-Furnished Equipment: Match plug configurations.
1. Cord and Plug Sets: Match equipment requirements.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Manufacturers’ Names: Shortened versions (shown in parentheses) of the following manufacturers’ names are used in other Part 2 articles:
1. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper).
2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
4. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour).

2.02 STRAIGHT BLADE RECEPTACLES
A. Convenience Receptacles, 125 V, 20 A, with hex-head green grounding screw: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
1. Products: Subject to compliance with requirements, provide one of the following:
a. Cooper; 5351 (single), 5352 (duplex).
b. Hubbell; HBL5351 (single), CR5352 (duplex).
c. Leviton; 5891 (single), 5352 (duplex).
d. Pass & Seymour; 5381 (single), 5352 (duplex).

B. Tamper-Resistant Convenience Receptacles, 125 V, 20 A, with hex-head green grounding screw:
Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
1. Available Products: Subject to compliance with requirements, products that may be incorporated
into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; TR8300.
 b. Hubbell; HBL8300SG.
 c. Leviton; 8300-SGG.
 d. Pass & Seymour; 63H.
3. Description: Labeled to comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations"
Section.

2.03 GFCI RECEPTACLES
A. General Description: Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498,
and UL 943, Class A, and include indicator light that is lighted when device is tripped.
B. Hospital-Grade, Duplex GFCI Convenience Receptacles, 125 V, 20 A, with hex-head green grounding
screw: Comply with UL 498 Supplement SD.
1. Available Products: Subject to compliance with requirements, products that may be incorporated
into the Work include, but are not limited to, the following:
2. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; HGF20.
 b. Hubbell; HGF8300.
 c. Leviton; 6898-HG.

2.04 TWIST-LOCKING RECEPTACLES
A. Single Convenience Receptacles, 125 V, 20 A, with hex-head green grounding screw: Comply with
NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; L520R.
 b. Hubbell; HBL2310.
 c. Leviton; 2310.
 d. Pass & Seymour; L520-R.

2.05 PENDANT CORD-CONNECTOR DEVICES
A. Description: Matching, locking-type plug and receptacle body connector; NEMA WD 6 configurations L5-
20P and L5-20R, heavy-duty grade.
2. External Cable Grip: Woven wire-mesh type made of high-strength galvanized-steel wire strand,
matched to cable diameter, and with attachment provision designed for corresponding connector.

2.06 CORD AND PLUG SETS
A. Description: Match voltage and current ratings and number of conductors to requirements of equipment
being connected.
1. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-
insulated grounding conductor and equipment-rating ampacity plus a minimum of 30 percent.
2. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for
connection.

2.07 SNAP SWITCHES
A. Comply with NEMA WD 1 and UL 20.
B. Switches shall be of the grounding type with a hex-head grounded screw, and shall have quiet operating
mechanisms without the use of mercury switches.
C. Switches, 120/277 V, 20 A:
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221 (single pole), 2222 (two pole), 2223 (three way), 2224 (four way).
 b. Hubbell; CS1221 (single pole), CS1222 (two pole), CS1223 (three way), CS1224 (four way).
 c. Leviton; 1221-2 (single pole), 1222-2 (two pole), 1223-2 (three way), 1224-2 (four way).
 d. Pass & Seymour; 20AC1 (single pole), 20AC2 (two pole), 20AC3 (three way), 20AC4 (four
 way).
D. Pilot Light Switches, 20 A:
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221PL for 120 V and 277 V.
b. Hubbell: HPL1221PL for 120 V and 277 V.
c. Leviton: 1221-PLR for 120 V, 1221-7PLR for 277 V.
d. Pass & Seymour: PS20AC1-PLR for 120 V.

2. Description: Single pole, with neon-lighted handle, illuminated when switch is "ON."

E. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Hubbell; HBL1557.
 c. Leviton; 1257.
 d. Pass & Seymour; 1251.

F. Key-Operated, Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 1995L.
 b. Hubbell; HBL1557L.
 c. Leviton; 1257L.
 d. Pass & Seymour; 1251L.

2.08 WALL-BOX DIMMERS
A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.
C. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.09 FAN SPEED CONTROLS
A. Modular, 120-V, full-wave, solid-state units with integral, quiet on-off switches and audible frequency and EMI/RFI filters. Comply with UL 1917.
 1. Continuously adjustable slider.

2.10 WALL PLATES
A. Single and combination types to match corresponding wiring devices.
 2. Plate-Securing Screws: Stainless steel to match plate finish.
 3. Material for Finished Spaces: 0.035-inch- (1-mm-) thick, brushed finished stainless steel.
 5. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in "wet locations."
B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant, die-cast aluminum with lockable cover.

2.11 FLOOR SERVICE FITTINGS
A. Type: Cast iron, adjustable, flush in floor type with lifting cover. Lifting lids shall have cable openings to allow for lid to be closed when outlet is in use.
B. Service Plate: with carpet flange or tile trim for floor material.
C. Power Receptacle: NEMA WD 6 configuration 5-20R, gray finish, refer to drawings for quantities.
D. Voice and Data Communication Outlets: refer to drawings for quantities.

2.12 MULTIOUTLET ASSEMBLIES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hubbell Incorporated; Wiring Device-Kellems.
 2. Wiremold Company (The).
B. If not indicated on Drawings, add mounting heights, raceway sizes, and types and spacing of receptacle devices to paragraph below. Add descriptions of special features in assemblies such as fused receptacles, special-purpose switches, and channels for communication wiring.
C. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.
D. Raceway Material: Metal, with color as selected by architect from manufacturer's standard finishes.
E. Wire: No. 12 AWG.

2.13 SERVICE POLES
A. Description: Factory-assembled and -wired units to extend power and voice and data communication from distribution wiring concealed in ceiling to devices or outlets in pole near floor.
1. Poles: Nominal 2.5-inch- (65-mm-) square cross section, with height adequate to extend from floor to at least 6 inches (150 mm) above ceiling, and with separate channels for power wiring and voice and data communication cabling.
2. Mounting: Ceiling trim flange with concealed bracing arranged for positive connection to ceiling supports; with pole foot and carpet pad attachment.
4. Wiring: Sized for minimum of five No. 12 AWG power and ground conductors and a minimum of four, 4-pair, Category 6 voice and data communication cables.
5. Power Receptacles: Two duplex, 20-A, heavy-duty, NEMA WD 6 configuration 5-20R units unless otherwise indicated.
6. Voice and Data Communication Outlets: as indicated on the drawings.

2.14 FINISHES
A. See Editing Instruction No. 2 in the Evaluations for a discussion of wiring device colors. Coordinate with Drawings.
B. Color: Wiring device catalog numbers in Section Text do not designate device color.
1. Wiring Devices Connected to Normal Power System: As selected by Architect, unless otherwise indicated or required by NFPA 70 or device listing.

PART 3 - EXECUTION
3.01 INSTALLATION
A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.
B. Coordination with Other Trades:
1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.
C. Conductors:
1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtailed.
4. Existing Conductors:
a. Cut back and pigtail, or replace all damaged conductors.
b. Straighten conductors that remain and remove corrosion and foreign matter.
c. Pigtail existing conductors is permitted provided the outlet box is large enough.
D. Device Installation:
1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtailed that are not less than 6 inches (152 mm) in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtailed for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.
E. Receptacle Orientation:
1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the left.
F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
G. Dimmers:
1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan speed control are listed for that application.
3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device listing conditions in the written instructions.
H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.02 IDENTIFICATION
A. Comply with Division 26 Section “Identification for Electrical Systems.”
1. Receptacles: Identify panelboard and circuit number from which served. Use hot, stamped or engraved machine printing with black filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.03 FIELD QUALITY CONTROL
A. Perform tests and inspections and prepare test reports.
1. Test Instruments: Use instruments that comply with UL 1436.
2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.
B. Tests for Convenience Receptacles:
1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is not acceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
END OF SECTION
SECTION 26 2813
FUSES

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and
 Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Cartridge fuses rated 600-V ac and less for use in control circuits, enclosed controllers switches.

1.03 SUBMITTALS
A. Product Data: For each type of product indicated. Include construction details, material, dimensions,
 descriptions of individual components, and finishes for spare-fuse cabinets. Include the following for each
 fuse type indicated:
 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to
 accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local
 ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer’s technical data on which ambient temperature adjustment
 calculations are based.
 2. Dimensions and manufacturer’s technical data on features, performance, electrical characteristics,
 and ratings.
 4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak
 let-through current) for each type and rating of fuse. Coordination charts and tables and related
 data.
 5. Fuse sizes for elevator feeders and elevator disconnect switches.
B. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance
 manuals. In addition to items specified in Division 01 Section “Execution and Closeout Requirements”
 and “Closeout Submittals,” include the following:
 1. Ambient temperature adjustment information.
 2. Current-limitation curves for fuses with current-limiting characteristics.
 3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak
 let-through current) for each type and rating of fuse. Coordination charts and tables and related
 data.

1.04 QUALITY ASSURANCE
A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from
 single manufacturer.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a
 qualified testing agency, and marked for intended location and application.
C. Comply with NEMA FU 1 for cartridge fuses.
D. Comply with NFPA 70.
E. Comply with UL 248-11 for plug fuses.

1.05 PROJECT CONDITIONS
A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more
 than 100 deg F (38 deg C), apply manufacturer’s ambient temperature adjustment factors to fuse ratings.

1.06 COORDINATION
A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with
 system short-circuit current levels.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Bussmann, Inc.
 2. Edison Fuse, Inc.
 3. Ferraz Shawmut, Inc.
 4. Littelfuse, Inc.
2.02 CARTRIDGE FUSES
A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
 1. Fuse Pullers: For each size of fuse, where applicable and available, from fuse manufacturer.
 2. Electrical contractor to provide to the owner as spares, a minimum of 10% of the quantity of fuses used of each type and rating, with a minimum of one set of each type.

PART 3 - EXECUTION
3.01 EXAMINATION
A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 FUSE APPLICATIONS
A. Cartridge Fuses:
 1. Service Entrance and feeders over 600 A: Class L, time delay, 200 KA interrupting rating.
 2. Feeders less than 600 A: Class RK1, time delay or Class J, time delay, 200 KA interrupting rating.
 3. Motor Branch Circuits: Class RK5, time delay, 200 KA interrupting rating.
 4. Comply with NEC article 110-9 and 240-60b.

3.03 INSTALLATION
A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.04 IDENTIFICATION
A. Install labels complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.
 3. Molded-case circuit breakers (MCCBs).
 4. Enclosures.

1.03 DEFINITIONS
A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.04 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified.

1.05 SUBMITTALS
A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated.
 Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of NRTL listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.
B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.
C. Qualification Data: For qualified testing agency.
D. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
E. Field quality-control reports.
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
F. Manufacturer's field service report.
G. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

1.06 QUALITY ASSURANCE
A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.

1.07 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).

1.08 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.01 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw,600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 5. Hookstick Handle: Allows use of a hookstick to operate the handle.
 6. Lugs: Mechanical type, suitable for number, size, and conductor material.
 7. Service-Rated Switches: Labeled for use as service equipment.

2.02 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 4. Hookstick Handle: Allows use of a hookstick to operate the handle.
 5. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.03 RECEPTACLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy-Duty, Single-Throw Fusible Switch: 600 or 240 -V ac, voltage and ampere sizes as indicated on the drawings; UL 98 and NEMA KS 1; horsepower rated, with clips or bolt pads to accommodate indicated fuses; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

C. Type HD, Heavy-Duty, Single-Throw Nonfusible Switch: 600 or 240 -V ac, voltage and ampere sizes as indicated on the drawings; UL 98 and NEMA KS 1; horsepower rated, lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

Interlocking Linkage: Provided between the receptacle and switch mechanism to prevent inserting or removing plug while switch is in the on position, inserting any plug other than specified, and turning switch on if an incorrect plug is inserted or correct plug has not been fully inserted into the receptacle.

E. Receptacle: Polarized, three-phase, five wire or four-wire receptacle as indicated on the drawings.

PART 3 - EXECUTION
3.01 EXAMINATION
A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION
A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
B. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
D. Install fuses in fusible devices.
E. Comply with NECA 1.

3.03 IDENTIFICATION
A. Comply with requirements in Division 26 Section "Identification for Electrical Systems."
1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.04 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
C. Perform tests and inspections.
1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
D. Acceptance Testing Preparation:
1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.
E. Tests and Inspections:
1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
F. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
G. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial
action taken, and observations after remedial action.

3.05 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION
SECTION 26 4313
TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section includes field-mounted TVSS for low-voltage (120 to 600 V) power distribution and control equipment.

1.03 DEFINITIONS
B. SVR: Suppressed voltage rating.
C. TVSS: Transient voltage surge suppressor(s), both singular and plural; also, transient voltage surge suppression.

1.04 SUBMITTALS
A. Product Data: For each type of product indicated. Include rated capacities, operating weights, electrical characteristics, furnished specialties, and accessories.
B. Qualification Data: For qualified testing agency.
C. Product Certificates: For TVSS devices, from manufacturer.
D. Field quality-control reports.
E. Operation and Maintenance Data: For TVSS devices to include in emergency, operation, and maintenance manuals.
F. Warranties: Sample of special warranties.

1.05 QUALITY ASSURANCE
A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a testing agency, and marked for intended location and application.
C. Comply with IEEE C62.41.2 and test devices according to IEEE C62.45.
D. Comply with NEMA LS 1.
E. All TVSS (SPD) shall comply with the requirements of UL 1449, edition 3 (ALL TYPES), and NEC 2008, in addition to complying with the requirements for UL Master Label Lighting Protection System, UL 96A.
F. Comply with NFPA 70.

1.06 PROJECT CONDITIONS
A. Service Conditions: Rate TVSS devices for continuous operation under the following conditions unless otherwise indicated:
 1. Maximum Continuous Operating Voltage: Not less than 115 percent of nominal system operating voltage.
 2. Operating Temperature: 30 to 120 deg F (0 to 50 deg C).
 3. Humidity: 0 to 85 percent, noncondensing.
 4. Altitude: Less than 20,000 feet (6090 m) above sea level.

1.07 COORDINATION
A. Coordinate location of field-mounted TVSS devices to allow adequate clearances for maintenance.
B. Coordinate TVSS devices with Division 26 Section "Electrical Power Monitoring and Control."

1.08 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of surge suppressors that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: five years from date of Final Acceptance or Beneficial Occupancy.
B. Special Warranty for Cord-Connected, Plug-in Surge Suppressors: Manufacturer's standard form in which manufacturer agrees to repair or replace electronic equipment connected to circuits protected by surge suppressors.
1.09 EXTRA MATERIALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Replaceable Protection Modules: one of each size and type installed.

PART 2 - PRODUCTS
2.01 SERVICE ENTRANCE SUPPRESSORS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. ABB USA.
2. Atlantic Scientific.
4. Thor.
5. Liebert Corporation; a division of Emerson Network Power.
B. Surge Protection Devices:
1. Comply with UL 1449.
2. Modular design (with field-replaceable modules).
3. Fuses, rated at 200-kA interrupting capacity.
4. Fabrication using bolted compression lugs for internal wiring.
5. Integral disconnect switch.
6. Redundant suppression circuits.
7. Redundant replaceable modules.
8. Arrangement with copper bus bars and for bolted connections to phase buses, neutral bus, and ground bus.
9. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
10. LED indicator lights for power and protection status.
11. Audible alarm, with silencing switch, to indicate when protection has failed.
12. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
C. Peak Single-Impulse Surge Current Rating: 320 kA per mode/640 kA per phase.
D. Minimum single impulse current ratings, using 8-by-20-mic.sec waveform described in IEEE C62.41.2:
1. Line to Neutral: 70,000 A.
2. Line to Ground: 70,000 A.
3. Neutral to Ground: 50,000 A.
E. Protection modes and UL 1449 SVR for grounded wye circuits with 208Y/120 V, 3-phase, 4-wire circuits shall be as follows:
1. Line to Neutral: 800 V for 208Y/120 V.
2. Line to Ground: 800 V for 208Y/120 V.
3. Neutral to Ground: 800 V for 208Y/120 V.

2.02 PANELBOARD SUPPRESSORS
A. Surge Protection Devices:
1. Non-modular.
2. LED indicator lights for power and protection status.
3. Audible alarm, with silencing switch, to indicate when protection has failed.
4. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
B. Peak Single-Impulse Surge Current Rating: 160 kA per mode/320 kA per phase.
C. Minimum single impulse current ratings, using 8-by-20-mic.sec waveform described in IEEE C62.41.2:
1. Line to Neutral: 70,000 A.
2. Line to Ground: 70,000 A.
3. Neutral to Ground: 50,000 A.
D. Protection modes and UL 1449 SVR for grounded wye circuits with 208Y/120 V, 3-phase, 4-wire circuits shall be as follows:
1. Line to Neutral: 400 V for 208Y/120 V.
2. Line to Ground: 400 V for 208Y/120 V.
3. Neutral to Ground: 400 V for 208Y/120 V.

2.03 ENCLOSURES
A. Indoor Enclosures: NEMA 250 Type 1.
B. Outdoor Enclosures: NEMA 250 Type 4X.

PART 3 - EXECUTION
3.01 INSTALLATION
A. Install TVSS devices at service entrance on load side, with ground lead bonded to service entrance ground.
B. Install TVSS devices for panelboards and auxiliary panels with conductors or buses between suppressor and points of attachment as short and straight as possible. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
 1. Provide multiple, 100 (service entrance) or 60 (panelboard)-A circuit breakers as a dedicated disconnecting means for TVSS.

3.02 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
 1. Verify that electrical wiring installation complies with manufacturer's written installation requirements.
C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
D. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS, "Surge Arresters, Low-Voltage Surge Protection Devices" Section. Certify compliance with test parameters.
 2. After installing TVSS devices but before electrical circuitry has been energized, test for compliance with requirements.
 3. Complete startup checks according to manufacturer's written instructions.
E. TVSS device will be considered defective if it does not pass tests and inspections.
F. Prepare test and inspection reports.

3.03 STARTUP SERVICE
A. Do not energize or connect service entrance equipment and panelboards to their sources until TVSS devices are installed and connected.
B. Do not perform insulation resistance tests of the distribution wiring equipment with the TVSS installed. Disconnect before conducting insulation resistance tests, and reconnect immediately after the testing is over.

3.04 DEMONSTRATION
A. Train Owner's maintenance personnel to maintain TVSS devices.
PART 1 - GENERAL
1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
1. Interior lighting fixtures, lamps, and ballasts.
2. Emergency lighting units.
3. Exit signs.
4. Lighting fixture supports.
B. Related Sections:
1. Division 26 Section "Network Lighting Controls" for manual or programmable control systems with low-voltage control wiring or data communication circuits.

1.03 DEFINITIONS
A. BF: Ballast factor.
B. CCT: Correlated color temperature.
C. CRI: Color-rendering index.
D. LER: Luminaire efficacy rating.
E. Lumen: Measured output of lamp and luminaire, or both.
F. Luminaire: Complete lighting fixture, including ballast housing if provided.

1.04 SUBMITTALS
A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:
1. Physical description of lighting fixture including dimensions.
2. Emergency lighting units including battery and charger.
3. Ballast, including BF.
5. Air and Thermal Performance Data: For air-handling lighting fixtures. Furnish data required in "Submittals" Article in Division 23 Section "Diffusers, Registers, and Grilles."
6. Sound Performance Data: For air-handling lighting fixtures. Indicate sound power level and sound transmission class in test reports certified according to standards specified in Division 23 Section "Diffusers, Registers, and Grilles."
7. Life, output (lumens, CCT, and CRI), and energy-efficiency data for lamps.
8. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing & Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.
 a. Testing Agency Certified Data: For indicated fixtures, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining fixtures shall be certified by manufacturer.
 b. Manufacturer Certified Data: Photometric data shall be certified by a manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
B. Shop Drawings: For nonstandard or custom lighting fixtures. Include plans, elevations, sections, details, and attachments to other work.
1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
2. Wiring Diagrams: For power, signal, and control wiring.
C. Samples: For each lighting fixture indicated in the Interior Lighting Fixture Schedule. Each Sample shall include the following:
1. Lamps and ballasts, installed.
2. Cords and plugs.
3. Pendant support system.
D. Installation instructions.
E. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
1. Lighting fixtures.
2. Suspended ceiling components.
3. Partitions and millwork that penetrate the ceiling or extends to within 12 inches (305 mm) of the plane of the luminaires.
5. Structural members to which suspension systems for lighting fixtures will be attached.
6. Other items in finished ceiling including the following:
 a. Air outlets and inlets.
 b. Speakers.
 c. Sprinklers.
 d. Smoke and fire detectors.
 e. Occupancy sensors.
 f. Access panels.
7. Perimeter moldings.

F. Qualification Data: For qualified agencies providing photometric data for lighting fixtures.
G. Product Certificates: For each type of ballast for bi-level and dimmer-controlled fixtures, from manufacturer.
H. Field quality-control reports.
I. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.
J. Warranty: Sample of special warranty.

1.05 QUALITY ASSURANCE
A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.
B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910, complying with the IESNA Lighting Measurements Testing & Calculation Guides.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
E. Comply with NFPA 70 with special attention to section 410.130(G) for maintenance disconnect.
F. Comply with the Energy Independence and Security Act (EISA), effective January 1, 2009.
G. FM Global Compliance: Lighting fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
H. Mockups: Provide interior lighting fixtures for room or module mockups, complete with power and control connections.
 1. Obtain Architect's approval of fixtures for mockups before starting installations.
 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 3. Approved fixtures in mockups may become part of the completed Work if undisturbed at time of Final Acceptance or Beneficial Occupancy.

1.06 COORDINATION
A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

1.07 WARRANTY
A. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.
 1. Warranty Period for Emergency Lighting Unit Batteries: 10 years from date of Final Acceptance or Beneficial Occupancy. Full warranty shall apply for first year, and prorated warranty for the remaining nine years.
 2. Warranty Period for Emergency Fluorescent Ballast Batteries: seven years from date of Final Acceptance or Beneficial Occupancy. Full warranty shall apply for first year, and prorated warranty for the remaining six years.

1.08 EXTRA MATERIALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Lamps and replacement LED boards: One for every 10 of each type and rating installed. Furnish at least one of each type.
2. Plastic Diffusers and Lenses: One for every 10 of each type and rating installed. Furnish at least one of each type.
3. Globes and Guards: One for every 8 of each type and rating installed.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide products indicated on the Drawings.

2.02 GENERAL REQUIREMENTS FOR LIGHTING FIXTURES AND COMPONENTS

A. A disconnecting means is required for the double-ended lamps, per NEC 410.130, and the disconnect shall be labeled and located next to the room's local switch, and shall be within sight of the lighting fixture, unless third party approved as part of the fixture package.

B. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.

C. Incandescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5A.

D. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.

E. HID Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5B.

F. Metal Parts: Free of burrs and sharp corners and edges.

G. Sheet Metal Components: Steel unless otherwise indicated. Form and support to prevent warping and sagging.

H. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

I. Diffusers and Globes:
 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 a. Lens Thickness: At least 0.125 inches minimum unless otherwise indicated.
 b. UV stabilized.
 2. Glass: Annealed crystal glass unless otherwise indicated.

J. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

 1. Label shall include the following lamp and ballast characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter code (T-4, T-5, T-8, T-12, etc.), tube configuration (twin, quad, triple, etc.), base type, and nominal wattage for fluorescent and compact fluorescent luminaires.
 c. Lamp type, wattage, bulb type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires.
 d. Start type (preheat, rapid start, instant start, etc.) for fluorescent and compact fluorescent luminaires.
 e. ANSI ballast type (M98, M57, etc.) for HID luminaires.
 f. CCT and CRI for all luminaires.

K. Electromagnetic-Interference Filters: Factory installed to suppress conducted electromagnetic interference as required by MIL-STD-461E. Fabricate lighting fixtures with one filter on each ballast indicated to require a filter.

2.03 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs:

 1. Lamps for AC Operation: LEDs, 50,000 hours minimum rated lamp life.
 2. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.

 a. Battery: Sealed, maintenance-free, nickel-cadmium type.
 b. Charger: Fully automatic, solid-state type with sealed transfer relay.
 c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.

f. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.

g. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

C. Test Record for Emergency and Exit Lighting: The contractor shall perform a test on each unit after it is permanently installed and charged for a minimum of 24 hours. Battery shall be tested for 90 minutes, in accordance with NEC 700. The battery test shall be done 10 days prior to final inspection by the State Construction Office. Any unit that fails the test must be repaired or replaced, and tested again. A copy of the test report shall be made available for the State Construction Office.

2.04 EMERGENCY LIGHTING UNITS

A. General Requirements for Emergency Lighting Units: Self-contained units complying with UL 924.

1. Battery: Sealed, maintenance-free, lead-acid type.
2. Charger: Fully automatic, solid-state type with sealed transfer relay.
3. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
4. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
5. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
6. Wire Guard: Heavy-chrome-plated wire guard protects lamp heads or fixtures.
7. Integral Time-Delay Relay: Holds unit on for fixed interval of 5 minutes when power is restored after an outage.
8. Remote Test: Switch in hand-held remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.05 LED LIGHT SOURCES

A. All LED light sources shall have an L70 rating of 50,000 minimum. The LED shall have a minimum output of 65 lumens per watt, and a color temperature of 3500K maximum, or as specified on the plans. The minimum color rendering index shall be 80.

1. LED drivers shall be rated for at least the LED life rating, with a maximum failure rate at life of 2%. LED drivers shall not have more than 10% losses. If required on plans, driver shall be compatible with dimming systems and dim to 5%.

2.06 LIGHTING FIXTURE SUPPORT COMPONENTS

A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channel- and angle-iron supports and nonmetallic channel and angle supports.
B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.
C. Twin-Stem Hangers: Two, 1/2-inch (13-mm) steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.
D. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).
E. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.
F. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Lighting fixtures:
1. Set level, plumb, and square with ceilings and walls unless otherwise indicated.
2. Install lamps in each luminaire.
B. Temporary Lighting: If it is necessary, and approved by Architect, to use permanent luminaires for temporary lighting, install and energize the minimum number of luminaires necessary. When construction is sufficiently complete, remove the temporary luminaires, disassemble, clean thoroughly, install new lamps, and reinstall.

C. Lay-in Ceiling Lighting Fixtures Supports: Use grid as a support element.
1. Install ceiling support system rods or wires, independent of the ceiling suspension devices, for each fixture. Locate not more than 6 inches (150 mm) from lighting fixture corners.
2. Support Clips: Fasten to lighting fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application.
3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch (20-mm) metal channels spanning and secured to ceiling tees.
4. Install at least one independent support rod or wire from structure to a tab on lighting fixture. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.
5. Hanger shall not be obstructed by ductwork, piping, etc., but shall be plumb and provide adequate support for fixture. Hangers shall be connected to structure and not to other MEP hangers, structures or devices.

D. Suspended Lighting Fixture Support:
1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
4. Do not use grid as support for pendant luminaires. Connect support wires or rods to building structure.
5. Hanger shall not be obstructed by ductwork, piping, etc., but shall be plumb and provide adequate support for fixture. Hangers shall be connected to structure and not to other MEP hangers, structures or devices.

E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.02 IDENTIFICATION
A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.03 FIELD QUALITY CONTROL
A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.
B. Verify that self-luminous exit signs are installed according to their listing and the requirements in NFPA 101.
C. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.04 STARTUP SERVICE
A. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Owner. Burn-in fluorescent and compact fluorescent lamps intended to be dimmed, for at least 100 hours at full voltage.

3.05 ADJUSTING
A. Occupancy Adjustments: When requested within 12 months of date of Final Acceptance or Beneficial Occupancy, provide on-site assistance in adjusting amiable luminaires to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose. Some of this work may be required after dark.
1. Adjust amiable luminaires in the presence of Architect.
SECTION 26 5600
EXTERIOR LIGHTING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
1. Exterior luminaires with lamps and ballasts.
2. Luminaire-mounted photoelectric relays.
3. Poles and accessories.
4. Luminaire lowering devices.
B. Related Sections:
1. Division 26 Section "Interior Lighting" for exterior luminaires normally mounted on exterior surfaces of buildings.

1.03 DEFINITIONS
A. CCT: Correlated color temperature.
B. CRI: Color-rendering index.
C. HID: High-intensity discharge.
D. LER: Luminaire efficacy rating.
E. Luminaire: Complete lighting fixture, including ballast housing if provided.
F. Pole: Luminaire support structure, including tower used for large area illumination.
G. Standard: Same definition as "Pole" above.

1.04 STRUCTURAL ANALYSIS CRITERIA FOR POLE SELECTION
A. Dead Load: Weight of luminaire and its horizontal and vertical supports, lowering devices, and supporting structure, applied as stated in AASHTO LTS-4-M.
B. Live Load: Single load of 500 lbf (2224 N), distributed as stated in AASHTO LTS-4-M.
C. Ice Load: Load of 3 lbf/sq. ft. (145 Pa), applied as stated in AASHTO LTS-4-M Ice Load Map.
D. Wind Load: Pressure of wind on pole and luminaire and banners and banner arms, calculated and applied as stated in AASHTO LTS-4-M.
1. Basic wind speed for calculating wind load for poles is 130 mph (53 m/s).
 a. Wind Importance Factor: 1.0.
 c. Velocity Conversion Factors: 1.0.

1.05 SUBMITTALS
A. Product Data: For each luminaire, pole, and support component, arranged in order of lighting unit designation. Include data on features, accessories, finishes, and the following:
1. Physical description of luminaire, including materials, dimensions, effective projected area, and verification of indicated parameters.
2. Details of attaching luminaires and accessories.
3. Details of installation and construction.
4. Luminaire materials.
5. Photometric data based on laboratory tests of each luminaire type, complete with indicated lamps, ballasts, and accessories.
 a. Testing Agency Certified Data: For indicated luminaires, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
 b. Manufacturer Certified Data: Photometric data shall be certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
6. Photoelectric relays.
7. Ballasts, including energy-efficiency data.
8. Lamps, including life, output, CCT, CRI, lumens, and energy-efficiency data.
10. Means of attaching luminaires to supports, and indication that attachment is suitable for components involved.
11. Anchor bolts for poles.
12. Manufactured pole foundations.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Anchor-bolt templates keyed to specific poles and certified by manufacturer.
 3. Design calculations, certified by a qualified professional engineer, indicating strength of screw foundations and soil conditions on which they are based.
 4. Wiring Diagrams: For power, signal, and control wiring.

C. Samples: For products designated for sample submission in the Exterior Lighting Device Schedule. Each Sample shall include lamps and ballasts.

D. Pole and Support Component Certificates: Signed by manufacturers of poles, certifying that products are designed for indicated load requirements in AASHTO LTS-4-M and that load imposed by luminaire and attachments has been included in design. The certification shall be based on design calculations by a professional engineer.

E. Qualification Data: For qualified agencies providing photometric data for lighting fixtures.

F. Field quality-control reports.

G. Operation and Maintenance Data: For luminaires and poles to include in emergency, operation, and maintenance manuals.

H. Warranty: Sample of special warranty.

1.06 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NFPA 70.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Package aluminum poles for shipping according to ASTM B 660.

B. Store poles on decay-resistant-treated skids at least 12 inches (300 mm) above grade and vegetation. Support poles to prevent distortion and arrange to provide free air circulation.

C. Handle wood poles so they will not be damaged. Do not use pointed tools that can indent pole surface more than 1/4 inch (6 mm) deep. Do not apply tools to section of pole to be installed below ground line.

D. Retain factory-applied pole wrappings on fiberglass and laminated wood poles until right before pole installation. Handle poles with web fabric straps.

E. Retain factory-applied pole wrappings on metal poles until right before pole installation. For poles with nonmetallic finishes, handle with web fabric straps.

1.08 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace products that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within specified warranty period. Manufacturer may exclude lightning damage, hail damage, vandalism, abuse, or unauthorized repairs or alterations from special warranty coverage.
 1. Warranty Period for Luminaires: five years from date of Final Acceptance or Beneficial Occupancy.
 2. Warranty Period for Metal Corrosion: five years from date of Final Acceptance or Beneficial Occupancy.
 3. Warranty Period for Color Retention: five years from date of Final Acceptance or Beneficial Occupancy.
 4. Warranty Period for Poles: Repair or replace lighting poles and standards that fail in finish, materials, and workmanship within manufacturer's standard warranty period, but not less than three years from date of Final Acceptance or Beneficial Occupancy.

1.09 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lamps and replacement LED boards: One for every 10 of each type and rating installed. Furnish at least one of each type.
 2. Glass and Plastic Lenses, Covers, and Other Optical Parts: One for every 10 of each type and rating installed. Furnish at least one of each type.
3. Ballasts: One for every 10 of each type and rating installed. Furnish at least one of each type.
4. Globes and Guards: One for every 10 of each type and rating installed. Furnish at least one of each type.

PART 2 - PRODUCTS

2.01 MANUFACTURERS
A. Products: Subject to compliance with requirements, provide product indicated on Drawings or equivalent products by other manufacturers listed on the drawings.

2.02 GENERAL REQUIREMENTS FOR LUMINAIRES
A. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction.
 1. LER Tests Incandescent Fixtures: Where LER is specified, test according to NEMA LE 5A.
 2. LER Tests Fluorescent Fixtures: Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.
 3. LER Tests HID Fixtures: Where LER is specified, test according to NEMA LE 5B.
B. Lateral Light Distribution Patterns: Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.
C. Metal Parts: Free of burrs and sharp corners and edges.
D. Sheet Metal Components: Corrosion-resistant aluminum unless otherwise indicated. Form and support to prevent warping and sagging.
E. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires.
F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens.
G. Exposed Hardware Material: Stainless steel.
H. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
I. Light Shields: Metal baffles, factory installed and field adjustable, arranged to block light distribution to indicated portion of normally illuminated area or field.
J. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 1. White Surfaces: 85 percent.
 2. Specular Surfaces: 83 percent.
 3. Diffusing Specular Surfaces: 75 percent.
K. Lenses and Refractors Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
L. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.
M. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or SSPC-SP 8, "Pickling."
 2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 a. Color: As selected by Architect from manufacturer's full range.
N. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax.
3. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
4. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611.
 a. Color: as selected by architect.
O. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp and ballast characteristics:
 a. "USES ONLY" and include specific lamp type.
 b. Lamp diameter code (T-4, T-5, T-8, T-12), tube configuration (twin, quad, triple), base type, and nominal wattage for fluorescent and compact fluorescent luminaires.
 c. Lamp type, wattage, bulb type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires.
 d. Start type (preheat, rapid start, instant start) for fluorescent and compact fluorescent luminaires.
 e. ANSI ballast type (M98, M57, etc.) for HID luminaires.
 f. CCT and CRI for all luminaires.

2.03 FLUORESCENT BALLASTS AND LAMPS
A. Ballasts for Low-Temperature Environments:
 1. Temperatures 0 Deg F (Minus 17 Deg C) and Higher: Electronic type rated for 0 deg F (minus 17 deg C) starting and operating temperature with indicated lamp types.
 2. Temperatures Minus 20 Deg F (Minus 29 Deg C) and Higher: Electromagnetic type designed for use with indicated lamp types.
B. Ballast Characteristics:
 1. Power Factor: 90 percent, minimum.
 2. Sound Rating: Class A.
 3. Total Harmonic Distortion Rating: Less than 10 percent.
 6. Transient-Voltage Protection: Comply with IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
C. Low-Temperature Lamp Capability: Rated for reliable starting and operation with ballast provided at temperatures minus 20 deg F (minus 29 deg C) and higher.

2.04 GENERAL REQUIREMENTS FOR POLES AND SUPPORT COMPONENTS
A. Structural Characteristics: Comply with AASHTO LTS-4-M.
 1. Wind-Load Strength of Poles: Adequate at indicated heights above grade without failure, permanent deflection, or whipping in steady winds of speed indicated in "Structural Analysis Criteria for Pole Selection" Article.
 2. Strength Analysis: For each pole, multiply the actual equivalent projected area of luminaires and brackets by a factor of 1.1 to obtain the equivalent projected area to be used in pole selection strength analysis.
B. Luminaire Attachment Provisions: Comply with luminaire manufacturers’ mounting requirements. Use stainless-steel fasteners and mounting bolts unless otherwise indicated.
C. Mountings, Fasteners, and Appurtenances: Corrosion-resistant items compatible with support components.
 1. Materials: Shall not cause galvanic action at contact points.
 3. Anchor-Bolt Template: Plywood or steel.
D. Handhole: Oval-shaped, with minimum clear opening of 2-1/2 by 5 inches (65 by 130 mm), with cover secured by stainless-steel captive screws.
E. Concrete Pole Foundations: Cast in place, with anchor bolts to match pole-base flange. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete."
2.05 ALUMINUM POLES
A. Poles: Seamless, extruded structural tube complying with ASTM B 429/B 429M, Alloy 6063-T6 with access handhole in pole wall.
1. Shape: as indicated in luminaire schedule.
2. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.
C. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.
D. Grounding and Bonding Lugs: Welded 1/2-inch (13-mm) threaded lug, complying with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.
E. Brackets for Luminaires: Detachable, with pole and adapter fittings of cast aluminum. Adapter fitting welded to pole and bracket, then bolted together with stainless-steel bolts.
1. Tapered oval cross section, with straight tubular end section to accommodate luminaire.
F. Prime-Coat Finish: Manufacturer's standard prime-coat finish ready for field painting.
G. Aluminum Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes. Color as selected by architect.

PART 3 - EXECUTION
3.01 LUMINAIRE INSTALLATION
A. Install lamps in each luminaire.
B. Fasten luminaire to indicated structural supports.
1. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
C. Adjust luminaires that require field adjustment or aiming.

3.02 POLE INSTALLATION
A. Alignment: Align pole foundations and poles for optimum directional alignment of luminaires and their mounting provisions on the pole.
B. Clearances: Maintain the following minimum horizontal distances of poles from surface and underground features unless otherwise indicated on Drawings:
1. Fire Hydrants and Storm Drainage Piping: 60 inches.
3. Trees: 15 feet from tree trunk.
C. Concrete Pole Foundations: Set anchor bolts according to anchor-bolt templates furnished by pole manufacturer. Concrete materials, installation, and finishing requirements are specified in Division 03 Section "Cast-in-Place Concrete."
D. Foundation-Mounted Poles: Mount pole with leveling nuts, and tighten top nuts to torque level recommended by pole manufacturer.
1. Use anchor bolts and nuts selected to resist seismic forces defined for the application and approved by manufacturer.
2. Grout void between pole base and foundation. Use nonshrink or expanding concrete grout firmly packed to fill space.
3. Install base covers unless otherwise indicated.
4. Use a short piece of 1/2-inch- (13-mm-) diameter pipe to make a drain hole through grout. Arrange to drain condensation from interior of pole.
E. Poles and Pole Foundations Set in Concrete Paved Areas: Install poles with minimum of 6-inch- (150-mm-) wide, unpaved gap between the pole or pole foundation and the edge of adjacent concrete slab. Fill unpaved ring with pea gravel to a level 1 inch (25 mm) below top of concrete slab.
F. Raise and set poles using web fabric slings (not chain or cable).

3.03 BOLLARD LUMINAIRE INSTALLATION
A. Align units for optimum directional alignment of light distribution.
B. Install on concrete base with top 4 inches (100 mm) above finished grade or surface at bollard location. Cast conduit into base, and shape base to match shape of bollard base. Finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Division 03 Section "Cast-in-Place Concrete."
3.04 INSTALLATION OF INDIVIDUAL GROUND-MOUNTING LUMINAires
 A. Install on concrete base with top 4 inches (100 mm) above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Division 03 Section "Cast-in-Place Concrete."

3.05 CORROSION PREVENTION
 A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.
 B. Steel Conduits: Comply with Division 26 Section "Raceway and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch- (0.254-mm-) thick, pipe-wrappping plastic tape applied with a 50 percent overlap.

3.06 GROUNDING
 A. Ground metal poles and support structures according to Division 26 Section "Grounding and Bonding for Electrical Systems."
 1. Install grounding electrode for each pole unless otherwise indicated.
 2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.

3.07 FIELD QUALITY CONTROL
 A. Inspect each installed fixture for damage. Replace damaged fixtures and components.
 B. Illumination Observations: Verify normal operation of lighting units after installing luminaires and energizing circuits with normal power source.
 1. Verify operation of photoelectric controls.
 C. Illumination Tests:
 1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IESNA testing guide(s):
 d. IESNA LM-64, "Photometric Measurements of Parking Areas."
 e. IESNA LM-72, "Directional Positioning of Photometric Data."
 D. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.08 DEMONSTRATION
 A. Train Owner's maintenance personnel to adjust, operate, and maintain luminaire lowering devices.

END OF SECTION
SECTION 28 0500
COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Electronic safety and security equipment coordination and installation.
2. Sleeves for raceways and cables.
3. Sleeve seals.
5. Common electronic safety and security installation requirements.

1.3 DEFINITIONS
A. EPDM: Ethylene-propylene-diene terpolymer rubber.
B. NBR: Acrylonitrile-butadiene rubber.

1.4 COORDINATION
A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
3. To allow right of way for piping and conduit installed at required slope.
4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."
D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES
A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

2.2 SLEEVE SEALS
A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Advance Products & Systems, Inc.
b. Calpico, Inc.
c. Metraflex Co.
d. Pipeline Seal and Insulator, Inc.
2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
3. Pressure Plates: Stainless steel. Include two for each sealing element.
4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT
A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION
A. Comply with NECA 1.
B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRONIC SAFETY AND SECURITY PENETRATIONS

A. Electronic safety and security penetrations occur when raceways, pathways, cables, wireways, or cable trays penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.

G. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable, unless indicated otherwise.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry.
 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants."

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal exterior wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION
PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
1. UTP cabling.
2. Coaxial cabling.
3. Low-voltage control cabling.
5. Fire alarm wire and cable.
6. Identification products.

1.03 DEFINITIONS
B. EMI: Electromagnetic interference.
C. IDC: Insulation displacement connector.
D. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
E. RCDD: Registered Communications Distribution Designer.
F. UTP: Unshielded twisted pair.
G. STS: North Carolina State Telecommunications Services

1.04 SUBMITTALS
A. Product Data: For each type of product indicated.
 1. For coaxial cable, include the following installation data for each type used:
 a. Nominal OD.
 b. Minimum bending radius.
 c. Maximum pulling tension.
B. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.
C. Field quality-control reports.
D. Maintenance Data: For wire and cable to include in maintenance manuals.

1.05 QUALITY ASSURANCE
A. Testing Agency Qualifications: An NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.
B. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 50 or less.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Plenum rated cable shall be used per NEC Article 300.22 and STS-1000 Telecommunications Wiring Guidelines, including the space above the ceiling tile system if it is an environmental air space.

1.06 DELIVERY, STORAGE, AND HANDLING
A. Test cables upon receipt at Project site.
1. Test each pair of UTP cable for open and short circuits.

1.07 PROJECT CONDITIONS
A. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.01 PATHWAYS
A. Conduit and Boxes: Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems."
1. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.02 CABLE
1. Shall be as specified in other sections of the specifications.

2.03 CONTROL-CIRCUIT CONDUCTORS
A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.

2.04 FIRE ALARM WIRE AND CABLE
A. Manufacturers: Subject to compliance with requirements,
1. Comtran Corp.
2. Draka USA.
3. Genesis Cable Products; Honeywell International, Inc.
4. West Penn Wire/CDT; a division of Cable Design Technologies.

B. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.

C. Signaling Line Circuits: Twisted, shielded pair, not less than #18 AWG.
1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.

1. Low-Voltage Circuits: No. 16 AWG, minimum.
2. Line-Voltage Circuits: No. 12 AWG, minimum.
3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor outer jacket with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

2.05 IDENTIFICATION PRODUCTS
A. Manufacturers: Subject to compliance with requirements,
1. Brady Corporation
2. HellermannTyton.
3. Kroy LLC.
4. Panduit Corp.

B. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

C. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

PART 3 - EXECUTION
3.01 INSTALLATION OF PATHWAYS
A. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.

B. Comply with requirements in Division 26 Section "Raceway and Boxes for Electrical Systems." for installation of conduits and wireways.

C. Install manufactured conduit sweeps and long-radius elbows whenever possible.

3.02 INSTALLATION OF CONDUCTORS AND CABLES
A. Comply with NECA 1.

B. General Requirements for Cabling:
 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 3. Install 110-style IDC termination hardware unless otherwise indicated.
 4. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer’s limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 8. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 9. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:
 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.

D. Outdoor Coaxial Cable Installation:
 1. Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install corrosion-resistant connectors with properly designed O-rings to keep out moisture.
 2. Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches (915 mm).

E. Separation from EMI Sources:
 1. Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).

4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).

5. Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).

6. Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.03 FIRE ALARM WIRING INSTALLATION

A. Comply with NECA 1 and NFPA 72.

B. Wiring Method: Install wiring in metal raceway according to Division 26 Section "Raceway and Boxes for Electrical Systems."
 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.

C. Wiring Method:
 1. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
 2. Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is not permitted.
 3. Signaling Line Circuits: Power-limited fire alarm cables shall not be installed in the same cable or raceway as signaling line circuits.

D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.

F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

G. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.

H. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.04 CONTROL-CIRCUIT CONDUCTORS

A. Minimum Conductor Sizes:
 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.
3.05 CONNECTIONS
A. Comply with requirements in Division 28 Section "Perimeter Security Systems" for connecting, terminating, and identifying wires and cables.
B. Comply with requirements in Division 28 Section "Intrusion Detection" for connecting, terminating, and identifying wires and cables.
C. Comply with requirements in Division 28 Section "Fire Detection and Alarm" for connecting, terminating, and identifying wires and cables.

3.06 FIRESTOPPING
A. Comply with requirements in Division 07 Section "Penetration Firestopping."
B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.07 GROUNDING
B. For low-voltage wiring and cabling, comply with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems."

3.08 IDENTIFICATION
A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.09 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Tests and Inspections:
 1. Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 4. Coaxial Cable Tests: Comply with requirements in Division 27 Section "Master Antenna Television System."
C. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
D. End-to-end cabling will be considered defective if it does not pass tests and inspections.
E. Prepare test and inspection reports.
PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Fire-alarm control unit.
 3. System smoke detectors.
 4. Duct type smoke detectors.
 5. Heat detectors.
 7. Magnetic door holders.
 10. Digital alarm communicator transmitter.
 11. System printer.

1.03 DEFINITIONS
A. LED: Light-emitting diode.
C. SCO: State of North Carolina State Construction Office

1.04 SYSTEM DESCRIPTION
A. Non coded addressable system, with automatic sensitivity control of certain smoke detectors and multiplexed signal transmission, dedicated to fire-alarm service only.

1.05 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Fire-alarm control unit and raceways shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified.

1.06 SUBMITTALS
A. General Submittal Requirements:
 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
 2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified fire-alarm technician, Level III minimum.
 c. Licensed or certified by authorities having jurisdiction.
B. Product Data: For each type of product indicated.
C. Shop Drawings: For fire-alarm system. Include plans, elevations, sections, details, and attachments to other work.
 2. Include voltage drop calculations for notification appliance circuits.
 3. Include battery-size calculations.
 4. Include performance parameters and installation details for each detector, verifying that each detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 5. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale and coordinating installation of duct smoke detectors and access to them. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators. Locate detectors according to manufacturer's written recommendations.
6. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.

7. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits.

D. Delegated-Design Submittal: For smoke and heat detectors indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Drawings showing the location of each smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the detector.

2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72.

E. Qualification Data: For qualified Installer.

F. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

G. Field quality-control reports.

H. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.

2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.

3. Record copy of site-specific software.

4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:
 a. Frequency of testing of installed components.
 b. Frequency of inspection of installed components.
 c. Requirements and recommendations related to results of maintenance.
 d. Manufacturer's user training manuals.

5. Manufacturer's required maintenance related to system warranty requirements.

6. Abbreviated operating instructions for mounting at fire-alarm control unit.

7. Copy of NFPA 25.

I. Software and Firmware Operational Documentation:

1. Software operating and upgrade manuals.

2. Program Software Backup: On magnetic media or compact disk, complete with data files.

3. Device address list.

4. Printout of software application and graphic screens.

1.07 QUALITY ASSURANCE

A. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level III technician. The technicians who install the Fire Alarm System are required to be trained and individually certified by the manufacturer, for the FACU model/series being installed. This training and certification must have occurred within the most recent 24 months, except that a NICET Level II certification will extend this to 36 months per DOI Guidelines.

B. Source Limitations for Fire-Alarm System and Components: Obtain fire-alarm system from single source from single manufacturer. Components shall be compatible with, and operate as, an extension of existing system.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. NFPA Certification: Obtain certification according to NFPA 72 by an NRTL, UL listed fire alarm company, and in the form of a placard by an FMG-approved alarm company. The installed system shall have certification from the local fire marshall.

1.08 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning with Substantial Completion, provide software support for two years.

C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading...
software shall include operating system. Upgrade shall include new or revised licenses for use of software.

1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

2. SPARE PARTS

D. Provide spare parts per NCDOI requirements. Include not less than 2 per category and at a minimum:

1. Fuses, 2 of each type.
2. Manual fire alarm boxes, 2% of installed quantity.
3. Addressable control relays, 4% of installed quantity.
4. Indoor Speakers with Strobes Lights, 4% of installed quantity.
5. Indoor Strobe-only Notification Appliances, 4% of installed quantity.
6. Monitor Modules (Addressable Interface), 4% of installed quantity.
7. Isolation Modules/Isolation Bases, 4% of installed quantity.
8. Addressable, Electronic Heat Detectors, 4% of installed quantity.
9. Spot-Type Smoke Detectors / Sounder Bases, 6% of installed quantity.
10. Duct type smoke detectors, 6% of installed quantity.

1.09 SPECIAL WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Final Acceptance or Beneficial Occupancy.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. NOTIFIER; a Honeywell company.
3. SimplexGrinnell LP; a Tyco International company.
4. Gamewell FCI by Honeywell

2.02 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:

2. Heat detectors.
3. Smoke detectors.
4. Duct smoke detectors.
5. Verified automatic alarm operation of smoke detectors.
6. Heat detectors in elevator shaft and pit.
7. Fire-extinguishing system operation.

B. Fire-alarm signal shall initiate the following actions:

1. Continuously operate alarm notification appliances.
2. Identify alarm at fire-alarm control unit.
3. Transmit an alarm signal to the remote alarm receiving station.
4. Unlock electric door locks in designated egress paths.
5. Activate voice/alarm communication system.
6. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
7. Close smoke dampers in air ducts of designated air-conditioning duct systems.
8. Record events in the system memory.
9. Send signal to elevator control panel for elevator to return to first floor.

C. System trouble signal initiation shall be by one or more of the following devices and actions:

1. Open circuits, shorts, and grounds in designated circuits.
2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
3. Loss of primary power at fire-alarm control unit.
4. Ground or a single break in fire-alarm control unit internal circuits.
5. Abnormal ac voltage at fire-alarm control unit.
7. Failure of battery charging.
8. Abnormal position of any switch at fire-alarm control unit or annunciator.
9. AHU Shutdown Defeat switch

D. System Trouble and Supervisory Signal Actions: Initiate notification appliance and annunciate at fire-alarm control unit. Record the event on system printer.

2.03 FIRE-ALARM CONTROL UNIT

A. General Requirements for Fire-Alarm Control Unit:
1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864 and listed and labeled by an NRTL.
 a. System software and programs shall be held in flash electrically erasable programmable read-only memory (EEPROM), retaining the information through failure of primary and secondary power supplies.
 b. Include a real-time clock for time annotation of events on the event recorder and printer.
 c. Feed through (not shunt trip) surge suppressor on AC input shall be provided. EFI E100HW120, Leviton 51020-owm, or Emerson TCS-HWR. Install suppressor rated for lightning surges. TVSS is required for compliance with the State Construction Office Fire Alarm Guidelines, Section 1.13.

2. Addressable initiation devices that communicate device identity and status.
 a. Smoke sensors shall additionally communicate sensitivity setting and allow for adjustment of sensitivity at fire-alarm control unit.
 b. Temperature sensors shall additionally test for and communicate the sensitivity range of the device.

3. Addressable control circuits for operation of mechanical equipment.

B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, 2 line(s) of 40 characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands and to indicate control commands to be entered into the system for control of smoke-detector sensitivity and other parameters.

C. Circuits:

1. Initiating Device, Notification Appliance, and Signaling Line Circuits: NFPA 72, Class B.
 a. Initiating Device Circuits: Style B.
 b. Notification Appliance Circuits: Style Y.
 c. Signaling Line Circuits: Style 1.
 d. Install no more than 100 addressable devices on each signaling line circuit. No more than three floors shall be connected to one circuit.
 e. The load connected to each circuit shall not exceed 80% of the maximum rated module load.

D. Smoke-Alarm Verification:

1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
2. Activate an NRTL-listed and -approved "alarm-verification" sequence at fire-alarm control unit and detector.
3. Record events by the system printer.
4. Sound general alarm if the alarm is verified.
5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.

E. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.

F. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals digital alarm communicator transmitters shall be powered by 24-V dc source.

1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.
2. A TVSS is required for compliance with the SCO Fire Alarm Guidelines and Policies, Section 1.13; and it must be a feed-through type.

G. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

2. All systems that report to a Central or Remote Supervising Station shall have a minimum of 24 hours secondary power capacity, plus 15 minutes of full alarm load.
3. Include battery calculations with shop drawing submittal. Use manufacturer's battery discharge curve to determine expected battery voltage after 24 hours of providing standby power. The use calculated Notification Appliance Circuit current drawn in the alarm mode to determine the expected voltage drop at EOL, based on conductor resistance per manufacturer's data sheet or NEC. The voltage drop at the EOL shall not exceed 14% of the expected battery voltage after the required standby time plus alarm time. All calculation shall be put on a dedicated sheet of as built drawings for future reference by fire alarm service technicians. NAC voltage drop shall be verified during tests.

H. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions. A copy of the floor plans shall be provided in the control panel.
I. Voice/Alarm Signaling Service: Central emergency communication system with redundant microphones, preamplifiers, amplifiers, and tone generators provided as a special module that is part of fire-alarm control unit.
 1. Indicated number of alarm channels for automatic, simultaneous transmission of different announcements to different zones or for manual transmission of announcements by use of the central-control microphone. Amplifiers shall comply with UL 1711 and be listed by an NRTL.
 a. Allow the application of an evacuation signal to indicated number of zones and, at same time, allow voice paging to the other zones selectively or in any combination.
 b. Programmable tone and message sequence selection.
 c. Standard digitally recorded messages for "Evacuation" and "All Clear."
 d. Generate tones to be sequenced with audio messages of type recommended by NFPA 72 and that are compatible with tone patterns of notification appliance circuits of fire-alarm control unit.
 2. Status Annunciator: Indicate the status of various voice/alarm speaker zones and the status of firefighters' two-way telephone communication zones.
 3. Preamplifiers, amplifiers, and tone generators shall automatically transfer to backup units, on primary equipment failure.

J. Printout of Events: On receipt of signal, print alarm, supervisory, and trouble events. Identify zone, device, and function. Include type of signal (alarm, supervisory, or trouble) and date and time of occurrence. Differentiate alarm signals from all other printed indications. Also print system reset event, including same information for device, location, date, and time. Commands initiate the printing of a list of existing alarm, supervisory, and trouble conditions in the system and a historical log of events.

2.04 MANUAL FIRE-ALARM BOXES
A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box. Verify any surface locations with architect during shop drawing submittal phase.
 1. Double-action mechanism requiring two actions to initiate an alarm, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
 2. Station Reset: Key- or wrench-operated switch.

2.05 SYSTEM SMOKE DETECTORS
A. General Requirements for System Smoke Detectors:
 1. Comply with UL 268; operating at 24-V dc, nominal.
 2. Detectors shall be two-wire type.
 3. Detectors shall be photoelectronic type. No ionization detectors shall be permitted.
 4. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
 5. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
 6. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
 7. Integral Visual-Indicating Light: LED type indicating detector has operated and power-on status.
 8. Remote Control: Unless otherwise indicated, detectors shall be analog-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
 a. Rate-of-rise temperature characteristic shall be selectable at fire-alarm control unit for 15 or 20 deg F (8 or 11 deg C) per minute.
 b. Fixed-temperature sensing shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F (57 or 68 deg C).
 c. Provide multiple levels of detection sensitivity for each sensor.
B. Photoelectric Smoke Detectors:
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
C. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. Provide remote monitoring and operator fire-alarm control unit at each duct smoke detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
3. Weatherproof Duct Housing Enclosure where required by the installation location: NEMA 250, Type 4X; NRTL listed for use with the supplied detector.
4. Each sensor shall have multiple levels of detection sensitivity.
5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
8. Coordinate locations and obtain final quantities of duct type smoke detectors with mechanical contractor.

2.06 HEAT DETECTORS
A. General Requirements for Heat Detectors: Comply with UL 521.
B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F (57 deg C) or a rate of rise that exceeds 15 deg F (8 deg C) per minute unless otherwise indicated.
1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.07 NOTIFICATION APPLIANCES
A. General Requirements for Notification Appliances: Individually addressed, connected to a signaling line circuit, equipped for mounting as indicated and with screw terminals for system connections.
B. General Requirements for Notification Appliances: Connected to notification appliance signal circuits, zoned as indicated, equipped for mounting as indicated and with screw terminals for system connections.
1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated and with screw terminals for system connections.
C. Visible Notification Appliances: Xenon strobe lights comply with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-(25-mm-) high letters on the lens.
1. Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.
 b. Mounting: Wall mounted unless otherwise indicated.
 c. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
 d. Flashing shall be in a temporal pattern, synchronized with other units.
 e. Strobe Leads: Factory connected to screw terminals.
 f. Mounting Faceplate: Factory finished, white.

2.08 REMOTE ANNUNCIATOR
A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
1. Mounting: Surface cabinet, NEMA 250, Type 1.
B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.09 ADDRESSABLE INTERFACE DEVICE
A. Description: Microelectronic monitor module, NRTL listed for use in providing a system address for alarm-initiating devices for wired applications with normally open contacts.
B. Integral Relay: Capable of providing a direct signal to circuit-breaker shunt trip for power shutdown.

2.10 DIGITAL ALARM COMMUNICATOR TRANSMITTER
A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632 and be listed and labeled by an NRTL.
B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture two telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the...
signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.

C. Local functions and display at the digital alarm communicator transmitter shall include the following:
 1. Verification that both telephone lines are available.
 2. Programming device.
 3. LED display.
 5. Communications failure with the central station or fire-alarm control unit.

D. Digital data transmission shall include the following:
 1. Address of the alarm-initiating device.
 2. Address of the trouble-initiating device.
 3. Loss of ac supply or loss of power.
 4. Low battery.
 5. Abnormal test signal.

E. Secondary Power: Integral rechargeable battery and automatic charger.

F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

2.011 AHU SHUTDOWN DEFEAT SWITCH

A. Key-operated switch with engraved label shall be provided adjacent to the Fire-Alarm Control Unit. Switch shall override fire alarm system input to building automation system so that air handling equipment may operate regardless of fire alarm status. Switch shall only be operated by authorized personnel and will create a trouble signal in Fire-Alarm Control Unit if switch is in “signal-override/shutdown defeat” position.

PART 3 - EXECUTION

3.01 EQUIPMENT INSTALLATION

A. Comply with NFPA 72 for installation of fire-alarm equipment.
B. All fire alarm cabling shall be installed in conduit.
C. Install wall-mounted equipment, with tops of cabinets not more than 72 inches (1830 mm) above the finished floor.
 1. Comply with requirements for seismic-restraint devices specified in Division 16 Section “Vibration and Seismic Controls for Electrical Systems.”
D. Smoke- or Heat-Detector Spacing:
 3. Smooth ceiling spacing shall not exceed 30 feet (9 m).
 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Appendix A or Appendix B in NFPA 72.
 5. HVAC: Locate detectors not closer than 3 feet (1 m) from air-supply diffuser or return-air opening.
 6. Lighting Fixtures: Locate detectors not closer than 12 inches (300 mm) from any part of a lighting fixture.
D. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Coordinate length of tubes and location in duct with mechanical contractor. Do not install above inaccessible ceilings.
F. Remote Status and Alarm Indicators: Install near each smoke detector and each sprinkler water-flow switch and valve-tamper switch that is not readily visible from normal viewing position.
G. Audible Alarm-Indicating Devices: Install not less than 6 inches (150 mm) below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille.
H. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches (150 mm) below the ceiling.
I. Device Location-Indicating Lights: Locate in public space near the device they monitor.
J. Fire-Alarm Control Unit: Surface mounted, with tops of cabinets not more than 72 inches (1830 mm) above the finished floor.
K. Annunciator: Install with top of panel not more than 72 inches (1830 mm) above the finished floor.
L. Provide double gang boxes for all fire alarm speakers.
M. To minimize wiring fault impact, isolation modules should be provided after each 25 initiating devices and control points on the addressable loop, or a lesser number where recommended by the manufacturer. See the SCO Fire Alarm Guidelines for more information on the isolation module requirements.

3.02 CONNECTIONS
A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Division 08 Section "Door Hardware." Connect hardware and devices to fire-alarm system.
 1. Verify that hardware and devices are NRTL listed for use with fire-alarm system. Connect hardware and devices to fire-alarm system.
 2. Install framed instructions in a location visible from fire-alarm control unit.
 3. Smoke dampers in air ducts of designated air-conditioning duct systems.
 4. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
 5. There shall be no splices in the system other than at device terminal blocks, or on terminal blocks in cabinets. "Wire Nuts" and crimp splices will not be permitted. Permanent wire markers shall be used to identify all connections at the FACU and other control equipment, at power supplies, and in terminal cabinets.
 6. All circuits leaving the riser on each floor shall feed through a labeled terminal block in a hinged enclosure accessible from the floor. If building layout requires the terminal cabinet to be above a drop ceiling, its location must be clearly and permanently identified with a placard readable from floor. Terminal block screws shall have pressure wire connectors of the self-lifting or box lug type.
 7. Addressable loop (signaling line) circuits shall be wired with type FPL/FPLR/FPLP fire alarm cable, AWG 18 minimum, low capacitance, twisted shielded copper pair. Cable shield drain wires are to be connected at each device on the loop to maintain continuity, taped to insulate from ground, and terminated at the FACU. Acceptable cables include Atlas 228-18-1-1STP, BSCC S1802s19 (same as EEC 7806LC), West Penn D975, D991 (AWG 16), D995 (AWG 14), or equal wire having capacitance of 30pf/ft. maximum between conductors. Belden 5320FJ acceptable if only FPL rating needed. The cable jacket color shall be red, with red (+) and black (-) conductor insulation.
 8. As required by 2.8 and 6.7, all other circuits in the system shall be wired with AWG 14, stranded copper, THHN/THW/N conductors, installed in conduit. Color code as shown below throughout the system, without color change in any wire run:
 9. Separate 24vdc Operating Power (for equipment), Yellow (+) / Brown (-).
 10. Door Control Circuits (magnet power, if from system), Orange.
 11. Alarm notification Appliance Circuits (horns/strobes), Blue (+) / Black (-).
C. On Fire Alarm System notification circuits, an end-of-line (EOL) resistor should be located as follows:
 1. In a location that is accessible to fire alarm maintenance personnel.
 2. In an area where maintenance or testing at the EOL resistor location will not be disruptive to the normal use of the facility.
 3. In an area that is not easily accessible to the normal building occupants (objective is to avoid accidental or malicious damage by building occupants)
 4. In an area that is no higher 9 ft. or lower than 7 ft. from the floor level.
 5. Not located in a stairway or bathroom location.

3.03 IDENTIFICATION
 A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 16 Section "Identification for Electrical Systems."
 B. Install framed instructions in a location visible from fire-alarm control unit.

3.04 GROUNDING
 A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

3.05 FIELD QUALITY CONTROL
 B. Field tests shall be witnessed by the State Fire Alarm Inspector for this project, the authorities having jurisdiction, and by the project electrical engineer. Notify the Office of the State Electrical Inspector to schedule required inspections. Inspections shall be scheduled in advance. Pre-test all equipment and the entire fire alarm system and correct all deficiencies prior to scheduling the State Electrical Inspector.
 1. Upon completion of the installation and its programming, the installer's technician shall test every alarm initiating device for proper response and indication, and all alarm notification appliances for effectiveness. Also, in coordination with the other building system contractors, all other system functions shall be verified, including (where applicable) elevator capture and the control of HVAC systems, door locks, pressurization fans, fire or smoke doors/dampers/shutters, etc. The engineer must be notified in advance of these 100% tests, to permit witnessing them if desired.
 2. The installer must fill out and submit the following documentation to the owner, through the engineer, prior to the AHJ's system acceptance inspection.
a. Use the NFPA 72-2007 "Record of Completion" Form per 2012 NC Building Code (no substitutes) to detail the system installation and also to certify that: (a) It was done per Code, and (b) The Code-required 100% test was performed. The fire alarm installer (manufacturer or authorized distributor's technician) must sign this form. If a representative of the AHJ, owner, or engineer witnesses the tests, in whole or in part, they must also sign the form to signify that fact only (annotating the form as needed to clarify their limited role).

b. The System Status and Programming Report described in State Construction Office State Fire Marshal. This must be generated on the day of the system acceptance inspection.

3. After completion of the 100% system test and submission of documentation per 7.7, the installer is to request the engineer to set up an inspection and include the responding Fire Department. The system must operate for at least two days prior to this inspection.

4. The fire alarm system will be inspected, with portions of it functionally tested. This will normally include the use of appropriate means to simulate smoke for testing detectors, as well as functionally testing the system interface with building controls, fire extinguishing systems and any off-premises supervising station. This statistical (sampling) inspection is intended to assure that the contractor has properly installed the system and performed the 100% operational test as required by NFPA 72. The electrical contractor shall provide two-way radios, ladders, and any other materials needed for testing the system, including a suitable smoke source.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

D. Tests and Inspections:
 1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed Record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" Table in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter.
 b. Comply with "Visual Inspection Frequencies" Table in the "Inspection" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.
 4. Test audible appliances for the private operating mode according to manufacturer's written instructions.
 5. Test visible appliances for the public operating mode according to manufacturer's written instructions.
 7. Provide special test and inspection with NC SCO and local inspector for fire alarm system. Demonstrate satisfactory performance of each fire alarm detection and notification device. Retest and correct deficiencies until final acceptance of the system.

E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Provide detailed training of owner’s personnel, consisting of at least two days of instruction. Instruction shall be by factory authorized technician.

I. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

J. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

K. Provide a fire alarm layout chart mounted beside the Fire-alarm control unit, and identical fire alarm layout chart included in Operation and Maintenance documents provided to the owner.

END OF SECTION